Im Thema "Gebiete mit naturbedingten Risiken" wird auf geogene Naturgefahren durch Subrosion/Verkarstung sowie auf seismische Ereignisse hingewiesen. Im Datensatz enthalten sind Informationen zu Gefahrengebieten bzw. Gebieten mit Gefährdungspotenzial, beobachtete Ereignisse zum Subrosionsgeschehen sowie die Erdbebenereignisse, deren Herdgebiete im Land bzw. in unmittelbarer Umgebung liegen. Zum Thema gehören die Geodaten Gefahrenhinweise Subrosion und seismische Ereignisse.
Das Projekt "Teilvorhaben: Koordination, Datenerfassung und -bearbeitung, Modellierung" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Geowissenschaften, Abteilung Geothermie und Reservoir-Technologie durchgeführt. INSIDE untersucht die thermisch-hydraulische Beeinflussung und geomechanischen Mechanismen, welche durch Druck- und Temperaturänderungen im Untergrund während des Betriebes von Geothemieanlagen induziert werden. Eine umfangreiche Monitoringkampagne von hochfrequenten (Seismizität) und niederfrequenten (Subsidenz, Hebung) Deformationsprozessen im Untergrund wird durchgeführt, um mögliche 4D Einwirkbereiche durch die Bewirtschaftung von geothermische Reservoiren zu identifizieren und ggf. zu quantifizieren. Ein Leistungsabgleich unterschiedlicher Monitoringtechniken soll helfen, geeignete Strategien für das Deformationsmonitoring und deren Datenbearbeitung zu entwickeln. Neue, innovative Messtechniken wie glasfaseroptischen Sensoren in Bohrlöchern, elektronische Corner-Reflektoren an der Erdoberfläche oder SAR-interferometrische Fernerkundungsmethoden sollen dabei systematisch mit etablierten Techniken verglichen werden, um in Zukunft optimierte, standortspezifische Messstrategien entwickeln und einsetzen zu können. Ergänzt wird die Monitoringkampagne durch die erstmalige Durchführung und Kombination von aktiven seismischen Messungen (Vertical Seismic Profiling, Sparker-Shot) in Geothermiebohrungen, welche für die Kalibrierung aller existierender Seismometer / Geschwindigkeitsmodelle im Raum München, als auch zum Post-Processing von aufgezeichneter Seismizität, einen erheblichen Mehrwert darstellen würden. Eine begleitende Modellierung soll das mechanische und thermo-hydraulische Verständnis von verschiedenen Szenarien im Lebenszyklus eines Geothermieprojektes untersuchen und die gegenseitige Beeinflussung im Hinblick auf ein risikominimiertes Management eines gemeinsam genutzten Reservoirs unter den beteiligten Nachbarn darstellen. Etablierte statische Modellierungsansätze sollen dabei zu standortspezifischen, dynamischen, kalibrierten THM-Modelle weiterentwickelt werden, welche aseismische und coseismische Deformationsprozesse abbilden und prognostizieren können.
Das Projekt "Hydrogeological and hydrochemical modelling of density-driven flow in the Tiberias Basin, in particular between Ha'on and Tiberias Regions, Jordan Valley" wird vom Umweltbundesamt gefördert und von Bundesamt für die Sicherheit der nuklearen Entsorgung durchgeführt. The aim of the current research is to identify regional sources and trans-boundary flow leading to the observed salinity of Lake Tiberias (LT) -also known as the Sea of Galilee or Lake Kinneret-, and its surroundings, which is considered the only natural surface fresh water reservoir of the area. The current study will include all sources of brines in the Tiberias Basin (TB) with specific emphasis of the relationship between the brines from the Ha'on and Tiberias Regions (HTR).The tasks will be achieved by a multidisciplinary approach involving: (i) numerical modelling of density-driven flow processes (i.e., coupled heat and dissolution of evaporites), (ii) hydrochemical studies, supplemented by investigations of subsurface structures.(i) Numerical modelling will be carried out by applying the commercial software FEFLOW® (WASY, GmbH) complemented with the open source code OpenGeoSys developed at the UFZ of Leipzig (Wang et al., 2009). The final goal is to build a 3D regional-scale model of density-driven flow that will result in: (1) revealing the different interactions between fresh groundwater and natural salinity sources (2) elucidate the driving mechanisms of natural brines and brackish water body's movements.(ii) Hydrochemical study will include major, minor and, if possible, rare earth elements (REE) as well as isotope studies. The samples will be analysed at the FU Berlin and UFZ Halle laboratories. Geochemical data interpretation and inverse modelling will be supported by PHREEQC. Hydrochemical field investigations will be carried out in Tiberias basin and its enclosing heights, i.e. the Golan, Eastern Galilee and northern Ajloun in order to search for indications of the presence of deep, relic saline groundwater infested by the inferred Ha'on mother-brine. The current approaches will be supplemented by seismic and statistical data analysis as well as GIS software applications for the definition of the subsurface structures. The key research challenges are: building a 3D structural model of selected regions of TB, adapting both structural and hydrochemical data to the numerical requirements of the model; calibrating the 3D regional-scale model with observational data. The results of this work are expected to establish suitable water-management strategies for the exploitation of freshwater from the lake and from the adjacent aquifers while reducing salinization processes induced by both local and regional brines.
Das Projekt "Teilprojekt: Kalibrierung und Dekonvolution von Bohrlochseismogrammen zur Optimierung von seismischen Gefährdungsanalysen und Bestimmung von Erdbeben-Quellparameter am Beispiel von Wellenformendaten aus dem ICDP-GONAF-Projekt" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. In den zurückliegenden 1.5 Jahren des Projektes konzentrierten sich die Arbeiten auf das erste bereits fertiggestellte vertikale Seismometer-Array des ICDP-GONAF-Observatoriums auf der Tuzla Halbinsel im Südosten Istanbuls. Aufgrund des verbesserten Signal-Rausch-Verhältnisses an den Bohrlochseismometern im Vergleich zu den Oberflächenstationen war es möglich, deutlich mehr M kleiner als 0 Mikrobeben zu detektieren. Diese Messdaten stellten die Grundlage für die bereits durchgeführten seismologischen Studien dar. In der hier beantragten Verlängerung werden wir unsere Erdbebendatenbank für das östliche Marmarameer fortlaufend erweitern, indem wir die im Sommer 2014 fertig gestellten Seismometer-Arrays auf der Armutlu-Halbinsel in die Detektionsalgorithmen integrieren, sowie dann auch weitere vier GONAF-Bohrlocharrays, deren Fertigstellung bis Frühjahr 2015 geplant ist. Es wurden verschiedene Methoden zur Bestimmung oberflächennaher Eigenschaften des Tuzla-Standortes, wie z.B. seismische Geschwindigkeiten und Dämpfung, angewendet und angepasst. Dieselben Methoden werden auf die neuen GONAF-Stationen übertragen, um zu verifizieren, ob die Beobachtungen in Tuzla standortspezifisch, oder auch für andere geologische Formationen repräsentativ sind. Die dann erstmals durchgeführte vergleichende Analyse unterschiedlicher Standorte in der Region wird neue Einblicke geben, um die Auswerteverfahren für die Korrektur von Standort-Effekten weiterzuentwickeln. Dies ist z.B. für eine genaue Abschätzung von Erdbeben-Quellparametern essentiell. Darüber hinaus planen wir, Processing-Methoden des Vertical-Seismic Profiling einzusetzen, um die Zweige der Nordanatolischen Verwerfungszone unterhalb des östlichen Marmarameeres abzubilden (passive fault-zone imaging). Dabei wird die lokale Seismizität genutzt, die in kleiner als 20 km Epizentralentfernung von den GONAF-Stationen in Tiefen von 5 bis 20 km auftritt und an den verschiedenen Tiefenstockwerken der GONAF-Arrays registriert wird. Schließlich werden Wellenformen-Registrierungen von erstmals in 300m Tiefe eingesetzten 3-Komponenten 1Hz MARK Seismometern ausgewertet, unter Anderem um verstärkt S-Wellen-Eigenschaften der Region zu untersuchen.
Das Projekt "The Swiss contribution to the ICDP Lake Van Drilling Project: Linking modern seismic and biogeochemical signatures to 500,000 years of environmental history" wird vom Umweltbundesamt gefördert und von Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Abteilung Wasserressourcen und Trinkwasser durchgeführt. This SNF proposal seeks funding for the continuation of the Swiss contribution to the Lake Van Drilling Project executed by the International Continental Scientific Drilling Program (ICDP). Among other previous Swiss ICDP engagements, the Lake Van Drilling project was pivotal in triggering the newly established SNF-supported Swiss membership in ICDP. Further, the SNF Swiss contribution is a central building block of the entire ICDP PaleoVan initiative. Lake Van is the fourth-largest terminal lake in the world, extending 130 km WSW-ENE 1674 m above sea level on a high plateau in eastern Anatolia, Turkey. The lake is surrounded by active volcanoes within a tectonically active area and it is known to accumulate fluids emanating from the Earths mantle. The partly annually-laminated sedimentary record down to 220 m depth recovered from Lake Van during the ICDP PaleoVan drilling operations in 2010 has been shown to be an excellent palaeoclimate and palaeoenvironment archive. The continuous, high-resolution continental sequence, which covers several glacial-interglacial cycles (greater than 500 kyr), represents a unique possibility to investigate in detail the climatic, environmental, and volcanic changes that occurred in the Near East, the cradle of human civilization, during much of the Quaternary Period. Furthermore, the sediments contain an invaluable record of past earthquake activities, allowing the construction of a catalogue of prehistoric earthquakes and making it possible to study fluid transport in the continental crust that was triggered by seismic events. In this context, the societal vulnerability of the area to seismic hazards was dramatically documented by the occurrence of the devastating earthquake of magnitude 7.2 close to the city of Van on 23 October 2011 (hereafter referred to as the VE11 earthquake). This unfortunate and tragic event offers a unique opportunity to calibrate the past seismic events recorded in the sediments of Lake Van and the related emission of fluids from the solid earth to a modern seismic analogue. Sediment and fluid transport triggered by this major seismic event need to be quantified in order to calibrate the sedimentological record, which is targeted by the follow-up field campaign proposed within this project extension. The continuation of the Swiss initiative, embedded in the overarching ICDP drilling project on Lake Van, encompasses all the 5 initial research modules (A-E) of the ongoing SNF project (200021-124981). Within this proposal extension, the extended modules (A*-E*) will focus on key issues and new developments that expand the initial topics, with a special emphasis on the recent major earthquake VE11 and its biogeochemical and sedimentological implications. At the same time, this extension will also allow the results that have already been acquired to be further analysed and written up for publication by the project team. A large number of publications is foreseen. (...)
Das Projekt "Quantification of ice content in mountain permafrost based on geophysical data and simulated annealing" wird vom Umweltbundesamt gefördert und von University of Fribourg, Geosciences Departement, Geography Unit durchgeführt. Current and future global warming will cause the degradation of mountain permafrost, which may strongly influence the stability of permafrost slopes or rock walls with potentially hazardous consequences. Due to the strong heterogeneity of both the thermal regime and the ground composition of mountain permafrost, its response to atmospheric forcing can however be highly variable for different landforms and within short distances. The spatial distribution of ice and liquid water is important for determining the sensitivity of a specific permafrost occurrence to climate change because of their large influence on the pace of temperature changes (by effects of latent heat) and their importance for geotechnical properties of the ground. Detailed knowledge of the material properties and internal structures of frozen ground is therefore an important prerequisite to determine the sensitivity of permafrost to climate change. Except for the active layer ice and water contents and their temporal and spatial variability usually cannot be measured directly. Geophysical methods are sensitive for the ice and liquid water content in the ground. With the proposed collaboration, two similar but complementary approaches to quantify the composition of the ground based on 2D sections of geophysical data will be combined for an improved determination of ice and water contents in permafrost regions. The so-called 4-phase model (4PM) is based on two simple petrophysical relationships for electrical resistivity and seismic velocity and estimates volumetric fractions of ice, water, and air within the pore volume of a rock matrix by jointly using complementary data sets from electric and seismic measurements. Due to inherent ambiguities in the model it is still restricted to specific cases and often allows only a rough estimation of the phase fractions. Major drawbacks of the current 4PM comprise the unsatisfactory discrimination between rock and ice and its under-determinedness, requiring the prescription of the porosity and further parameters. The so-called RSANN model (developed and used by the host institution) uses the technique of simulated annealing (a Monte-Carlo-type stochastic simulation approach) as an optimization tool for the integration of electrical resistivity and P-wave velocity to derive 2D sections of porosity, water saturation and volumetric water content. The simulated annealing technique allows - due to its iterative procedure - more parameters to be predicted instead of being prescribed as in the 4PM. The objective of the proposed collaboration is to combine the advantages of the two algorithms (4PM and RSANN) to overcome the shortcomings of the 4PM in order to improve the reliability of the determined ice and liquid water contents. (...)
Das Projekt "Sub project: Numerical simulations of sediment drift evolution to reconstruct current conditions and sediment transport mechanisms under fundamentally different extreme polar climate situations adopting high-resolution records from ODP Leg 178, offshore the Antarctic Peninsula" wird vom Umweltbundesamt gefördert und von Universität Bremen, Fachbereich 05: Geowissenschaften, Fachgebiet Modellierung von Sedimentationsprozessen durchgeführt. To gain a detailed understanding of the temporal and spatial evolution of the Antarctic Peninsula drifts, extensive numerical process simulations are essential to reconstruct the geological as well as oceanographic framework over long-time periods during the Neogene. This project will be directly connected to the IODP initiative - extreme climates. Numerical models enable a wide spectrum of scenarios to be tested, specifically to evaluate (a) current conditions and (b) sediment input variations in space and time for sediment transport processes in particular to quantify the along-slope vs. down-slope component. Accordingly, simulations obtain detailed information about past oceanic circulation and environmental conditions to identify climate shifts. However, sediment physics as well as erosion and deposition criteria are only partially implemented in ocean circulation models. Thus, this project focuses on two major aspects: (I) improvement of the sediment transport module in ROMS (Regional Ocean Circulation Model) and (II) development of a high-resolution 3D forward model to investigate the evolution of Drift 7. We have selected the area of OOP Leg 178, because a dense grid of seismic profiles and numerous high-resolution cores document extreme climate episodes. These considerable sedimentological and geophysical data supply information about: (a) event horizons, (b) seismostratigraphic unit thicknesses, (c) grain-size distributions within seismostratigraphic units, and (d) physical properties of sediments at event horizons and will serve as an excellent model input.
Das Projekt "Physical properties, climate signals, and structural features of Tertiary sediments in the Southern McMurdo Sound (Antarctica) derived from downhole logging in the ANDRILL-SMS project" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Angewandte Geophysik durchgeführt. In the framework of the international ANtarctic DRILLing program (ANDRILL) the 1138 m deep core borehole SMS was drilled in the Southern McMurdo Sound (Ross Sea). The investigations of Antarctic Neogene ice sheet variations, of long-term climate evolutions and of the tectonic history of McMurdo Sound represent the main project aims. One part of the German participation in the ANDRILL project is the extensive geophysical logging of the SMS borehole. It delivers a main basis for answering a lot of questions in the scope of the whole project consisting of about 100 scientists. Interpreting the downhole logging data permits among other things to establish a complete lithological log, to characterize the drilled sediments petrophysically, to determine sedimentary structures and to get evidence about palaeoclimatic conditions during up to 19 Mio years. Seismic experiments in the borehole allow linking detailed geological information with shipborne seismic sections. This way, local results can be transformed into spatial information thus providing an important contribution to the understanding of the tectonic structure of the Ross Sea.
Das Projekt "Tsunami Risk ANd Strategies For the European Region (TRANSFER)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The project main goal is to contribute to our understanding of tsunami processes in the Euro-Mediterranean region, to the tsunami hazard and risk assessment and to identifying the best strategies for reduction of tsunami risk. Focus will be posed on the gaps and needs for the implementation of an efficient tsunami early warning system (TEWS) in the Euro- Mediterranean area, which is a high-priority task in consideration that no tsunami early warning system is today in place in the Euro-Mediterranean countries. The main items addressed by the project may be summarised as follows. The present Europe tsunami catalogue will be improved and updated, and integrated into a world-wide catalogue (WP1). A systematic attempt will be made to identify and to characterise the tsunamigenic seismic (WP2) and non-seismic (WP3) sources throughout the Euro-Mediterranean region. An analysis of the present-day earth observing and monitoring (seismic, geodetic and marine) systems and data processing methods will be carried out in order to identify possible adjustments required for the development of a TEWS, with focus on new algorithms suited for real-time detection of tsunami sources and tsunamis (WP4). The numerical models currently used for tsunami simulations will be improved mainly to better handle the generation process and the tsunami impact at the coast (WP5). The project Consortium has selected ten test areas in different countries. Here innovative probabilistic and statistical approaches for tsunami hazard assessment (WP6), up-to-date and new methods to compute inundation maps (WP7) will be applied. Here tsunami scenario approaches will be envisaged; vulnerability and risk will be assessed; prevention and mitigation measures will be defined also by the advise of end users that are organised in an End User Group (WP8). Dissemination of data, techniques and products will be a priority of the project (WP9). Prime Contractor: Alma Mater Studiorum-Universita di Bologna; Bologna, Italy.
Das Projekt "Integrated Geophysical Exploration Technologies for Deep Fractured Geothermal Systems (I-GET)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The share of renewable energy sources in the European energy balance can be increased by a meaningful contribution of geothermal energy. Since the mining cost (exploration and drilling) to access the resources represents over 60 percent of the total investment, a reduction in mining cost would increase the competitiveness of geothermal energy significantly. This goal can be achieved if we had a way to detect the presence of the fluids inside the natural and/or enhanced geothermal systems before any drilling operation. The project I-GET is aimed at developing an innovative geothermal exploration approach based on advanced geophysical methods. The objective is to improve the detection, prior to drilling, of fluid bearing zones in naturally and/or artificially fractured geothermal reservoirs. This new approach will be tested in four European geothermal systems with different geological and thermodynamic reservoir characteristics: two high enthalpy (metamorphic and volcanic rocks), one middle enthalpy geothermal system (deep sedimentary rocks), and one low enthalpy geothermal system (shallow sedimentary rocks). Petrophysical and geomechanical properties of the investigated rocks will be defined by laboratory measurements. With respect to the high enthalpy sites elastic and electric rock properties will be determined at the steam/liquid transition of the pore fillings. The validity of the laboratory and simulation results will be verified by new field experiments. Seismic and magnetotelluric data will be acquired in the test sites, and new acquisition and processing techniques will be developed to solve problems related to the particular target such as high temperatures, anisotropy, phase condition, etc.. The static and dynamic three-dimensional model of geothermal reservoirs will be reconstructed by means of all the data acquired. The input of the results of new geophysical prospecting into reservoir modelling is a crucial test of the quality of the new exploration method.
Origin | Count |
---|---|
Bund | 13 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 13 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 13 |
Language | Count |
---|---|
Deutsch | 4 |
Englisch | 12 |
Resource type | Count |
---|---|
Keine | 5 |
Webdienst | 1 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 14 |
Lebewesen & Lebensräume | 14 |
Luft | 11 |
Mensch & Umwelt | 14 |
Wasser | 12 |
Weitere | 14 |