Das Projekt "Human influences on forests in southern Ethiopia: the case of Shashemane-Munessa-forest" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Biologie, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Pflanzenökologie durchgeführt. Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.
Das Projekt "SP1.1 Dynamische Anreicherungsprozesse von organischer Substanz in der SML" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Der Oberflächenfilm (SML) ist die oberste dünne Schicht des Ozeans und Teil jeglicher Wechselwirkung zwischen Luft und Meer, wie Gasaustausch, atmosphärische Deposition und Aerosolemission. Die Anreicherung von organischer Materie (OM) in der SML modifiziert die Luft-Meer-Austauschprozesse, aber welche OM-Komponenten selektiv angereichert werden, sowie warum und wann sie dies tun, ist weitgehend unbekannt (Engel et al., 2017). Unsere bisherige Forschung hat gezeigt, dass Biopolymere aus photoautotropher Produktion wichtige Komponenten der SML sind und den Luft-Meer-Austausch beeinflussen, indem sie als Biotenside (Galgani et al., 2016; Engel et al., 2018) und als Quelle primärer organischer Aerosole (Trueblood et al., 2021) wirken. Die Motivation unseres Projektes ist es daher, die dynamischen Anreicherungsprozesse von OM in der SML aufzuklären und zu beschreiben, wobei ein besonderer Schwerpunkt auf der Auflösung der OM-Quellen liegt. Mit unserem Modellierungsansatz ist es das Ziel, unser mechanistisches Verständnis der Zusammenhänge zwischen den Wachstumsbedingungen des Planktons, der Produktion und der Freisetzung von Biomolekülen, einschließlich potentieller Tenside, und der Akkumulation von OM in der SML zu konsolidieren. Eine solche Modellentwicklung wird in hohem Maße von den Ergebnissen und Erkenntnissen der verschiedenen Teilprojekte des BASS-Konsortiums profitieren. Umgekehrt ist es unsere Motivation, ein Modell zu etablieren, das als Synthesewerkzeug für die Interpretation und Integration von Feld-, Mesokosmen- und Labormessungen der OM-Anreicherung in der SML anwendbar wird.Relevanz für die Forschungsgruppe BASS - SP1.1 wird die Quellen, die Menge und die biochemische Zusammensetzung von OM in der SML entschlüsseln und damit wichtige Informationen für alle BASS-Teilprojekte liefern. Der primäre Ursprung von OM im Oberflächenozean ist die photosynthetische Produktion und die wichtigsten biochemischen Komponenten von frisch produzierter OM, d.h. Kohlenhydrate, Aminosäuren und Lipide, unterliegen der mikrobiellen Verarbeitung (SP1.2) und Photoreaktionen innerhalb der SML (SP1.3, SP1.4) und füllen auch den Pool der gelösten organischen Substanz (DOM) auf (SP1.5). Die Modellentwicklung in SP1.1 stellt eine Verbindung zwischen der Produktion von OM und ihrer Anreicherung innerhalb der SML her und zielt darauf ab, die entsprechenden Auswirkungen auf den Luft-Meer-Gasaustausch (SP2.1) zu bestimmen, indem Änderungen des Impulsflusses auf den Ozeanoberflächenschichten (SP2.2) sowie des Auftriebs (SP2.3) berücksichtigt werden. Das vorgeschlagene SML-Submodell wird auf der Grundlage der Ergebnisse aus SP1.4 und SP2.3 verfeinert. Ergebnisse aus den Modellsensitivitätsanalysen werden ergänzende Informationen über oberflächenaktive Eigenschaften verschiedener OM Komponenten und deren Auswirkungen auf Luft-Meer-Austauschprozesse liefern, die innerhalb von BASS ausgewertet werden.
Das Projekt "Importance of soil organic carbon and mineral particle size fractions for the fate of soil supplied organic chemicals and their microbial transformations" wird vom Umweltbundesamt gefördert und von Johann Heinrich von Thünen-Institut Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei - Institut für Biodiversität durchgeführt. The biogeochemical interface (BGI) in this project is defined as the organo-mineral surface of soil particles colonized by microorganisms. In the preceding project it was demonstrated that the different soil particle size fractions were associated with specifically structured microbial communities, a characteristic amount of soil organic carbon, and a specific capacity for adsorption of the organic chemicals phenol and 2,4-dichlorophenol, respectively. While the diversity of the microbial community was responsive to fertilization-determined additional organic soil carbon in the larger particle size fractions, it was unaffected in clay. Stable isotope probing with 13C-labelled phenol and 2,4-dichlorophenol revealed that the soil organic carbon in the BGIs also affected the diversity of microorganisms involved in the degradation of these chemicals. All these results are yet only based on studying one soil with three organic carbon variants (Bad Lauchstädt) and only two organic compounds. The objective of this 2nd phase project is to apply the innovative technology developed in the 1st phase for studying the BGI processes with soil organic carbon variants from another soil (Ultuna, SPP 1315 site) and with the chiralic anilide Fungicide metalaxyl as an additional compound. This 2nd phase SPP 1315 project will also, in a collaborative effort with two other SPP 1315 partners, investigate (1) the importance of BGIs for the entantio-selective degradation of metalaxyl and (2) the role of soil microorganisms in the formation of bound residues, respectively. Furthermore, the project will utilize stable isotope probing and next-generation DNA sequencing to link the structural and functional diversity of the microbial communities responsible for metabolism of organic chemicals in the different BGIs determined by particle size fractions and soil organic carbon variants.
Das Projekt "Teilvorhaben: Galvanisieren von Metallschaumkühlern unterschiedlicher Substrate" wird vom Umweltbundesamt gefördert und von HSO Herbert Schmidt GmbH & Co. KG durchgeführt. Das Projekt KoLibri adressiert das Thema Kühlung von E-Motoren und Leistungselektronik durch die Verwendung neuartiger Leichtbaustrukturen aus offenporigen Metallschaumstrukturen. Diese lassen eine bessere Kühlperformance erwarten und ermöglichen vor allem neue Bauweisen. Durch die Verwendung von offenporigen Metallschaumstrukturen soll die Kühlperformance um 20-50 % bei gleichem Bauraum erhöht werden bzw. bei gleicher Leistung das Gewicht um 50 % reduziert werden. Zudem werden durch die adressierten Herstellmethoden Feinguss und Beschichtung eine Kostenreduktion von 75 % im Vergleich zu rein additiver Fertigung (wie z.B. Selective Laser Sintering) erwartet. Weiterhin ermöglichen die strukturmechanischen Vorteile von Metallschäumen (hohes Steifigkeits- / Volumenverhältnis) die Kühler in das Design für die jeweiligen Anwendung mit einzubeziehen und so durch Ausnutzung der mechanischen Tragfähigkeit in Verbindung mit der Kühlung eine weiterer Gewichtsreduktion zu erreichen. Die Firma HSO als Spezialist für die Anwendung von galvanischen Verfahren auf unterschiedlichsten Substraten zeichnet sowohl für den Einsatz geeigneter Beschichtungsverfahren und deren Anwendung auf spezifischen Substraten als auch unterstützend für die Umsetzung des Recycling-Gedankens mit der sortenreinen Rückgewinnung der eingesetzten Werkstoffe verantwortlich.
Das Projekt "Teilvorhaben: Konzeptionierung und Test von Metallschaum-Demonstratoren für die Powerelektronik innerhalb der Mobilität" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Das Projekt KoLibri adressiert das Thema Kühlung von E-Motoren und Leistungselektronik durch die Verwendung neuartiger Leichtbaustrukturen aus offenporigen Metallschaumstrukturen. Diese lassen eine bessere Kühlperformance erwarten und ermöglichen vor allem neue Bauweisen. Durch die Verwendung von offenporigen Metallschaumstrukturen soll die Kühlperformance um 20-50 % bei gleichem Bauraum erhöht werden bzw. bei gleicher Leistung das Gewicht um 50 % reduziert werden. Zudem werden durch die adressierten Herstellmethoden Feinguss und Beschichtung eine Kosten-reduktion von 75 % im Vergleich zu rein additiver Fertigung (wie z.B. Selective Laser Sintering) erwartet. Weiterhin ermöglichen die strukturmechanischen Vorteile von Metallschäumen (hohes Steifigkeits- / Volumenverhältnis) die Kühler in das Design für die jeweilige Anwendung mit einzubeziehen und so durch Ausnutzung der mechanischen Tragfähigkeit in Verbindung mit der Kühlung eine weitere Gewichtsreduktion zu erreichen. Die Siemens AG (SAG) übernimmt die Gesamtkoordination im Projekt. Die SAG wird die grundlegenden Requirements definieren. Unter Leitung der SAG werden die Konzepte für die Demonstratoren erarbeitet und die konstruktiven Merkmale konkretisiert. Zur Bestimmung der thermischen Eigenschaften der zu entwickelnden Kühllösungen wird zusammen mit den Partnern TU Dresden und dem Fraunhofer ENAS, die SAG Simulations-Methodiker konzipieren. Die Validierung der Simulationsergebnisse erfolgt u.a. in den Laboren der SAG. In enger Zusammenarbeit mit dem IART werden Recycling -Technologien für die Konzepte der Metallschaumkühler entwickelt und bewertet. Es werden Demonstratoren für den Bereich Automotiv, Bahntechnik und Aerospace entwickelt und aufgebaut. Die Vermessung der Demonstratoren erfolgt maßgeblich durch die SAG. Mit den Partnern vom Fraunhofer IWU und der TU Dresden wird die SAG die entwickelten Fertigungsprozesse hin zu industrie-tauglichen Prozessen weiterentwickeln.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Deukum GmbH durchgeführt. Auf Grund des global ansteigenden Wasserbedarfs und den sinkenden zur Verfügung stehenden Süßwasserressourcen, besteht ein weltweites Interesse an effizienten Entsalzungsverfahren. Süßwasser, das vom Meer oder von geogenen Salzvorkommen beeinflusst wird, weist u. a. oft erhöhte Konzentrationen an Natrium und Chlorid auf. Hohe Nitrat- und Sulfatkonzentrationen resultieren hingegen meist aus landwirtschaftlichem Einfluss. Eine vollständige Entsalzung der Wässer ist nicht sinnvoll, sondern lediglich nur eine Verminderung der monovalenten Ionen nötig. Das Ziel dieses Forschungsvorhabens ist die Entwicklung eines energieeffizienten, selektiven, membranbasierten Entsalzungsverfahrens zur gezielten Entfernung monovalenter Ionen aus salzhaltigem Grund- und Oberflächenwasser sowie die Überprüfung potenzieller Anwendungen und Einsatzgebiete unter Berücksichtigung wasserchemischer, ökonomischer und ökologischer Aspekte. Es werden selektive Membranen für einen spezifischen Rückhalt monovalenter Salze entwickelt und in neukonstruierten Modulen für den Einsatz in einem elektrochemischen Verfahren in Labor- und Pilotanlagen verbaut. Mit den Anlagen werden Untersuchungen zur Identifikation optimierter Prozess- und Anlagenparameter in Abhängigkeit unterschiedlicher Rohwasserqualitäten und Aufbereitungsziele durchgeführt. Es wird geprüft, welche resultierenden Effekte und Herausforderungen bei der Grundwasseranreicherung und der Trinkwasseraufbereitung gegeben sind. Die entwickelte Technologie wird anhand einer ganzheitlichen ökonomisch-ökologischen Nachhaltigkeitsbewertung internationalen Zielgrößen wie den Nachhaltigkeitszielen gegenübergestellt, um Handlungsempfehlungen abzuleiten. Durch die Wahl der Partner aus Industrie, Wissenschaft und Praxis ist das Konsortium in der Lage, Anlagen zu bauen und die innovative Technologie bei Praxispartnern vor Ort zu testen und zu bewerten. Die Ergebnisse tragen somit maßgeblich zur Sicherung der Wasserressourcen, national wie international, bei.
Das Projekt "Glass Recovering Revolution: High performance Optical Sorter for glass collection from Waste (SEEGLASS)" wird vom Umweltbundesamt gefördert und von Picvisa Machine Vision Systems SL durchgeführt. The amount of Municipal Solid Waste (MSW) in the EU28 reached 245 million tons in 2012. Nowadays, Europe directives for waste management are more restrictive each year (e.g Landfill Directive 1999/31/EC), but unfortunately, landfill disposal still represents 34% of total MSW generated. On the other hand, citizen awareness as well as the high fees operators pay for landfill disposal, have helped to greatly increase the percentage for recycling from 18% in 1995, to 42% in 2012. However, 40% of all the glass waste ends up in mixed MSW plants (which typically contain 7% of glass). Instead of being disposed of in selective-waste collection, it ends up in landfills or is composted/incinerated with the remnant waste. We have developed SEEGLASS, a high performance optical sorter based on computer vision and a pneumatic rejection system. Our aim is to solve this non-environmentally friendly problem, while also offering our end-users additional revenues with this recovered material, which is not being exploited now (49€/tn glass). In addition, extracting this glass, will allow the treatment plants to significantly reduce costs from waste disposal fees (50€/Tonne EU average and rising). Payback for customers is estimated in only 19 months. With this project we will (i) construct pre-conditioning process line, (ii) optimise our current SEEGLASS computer vision system as well as its mechanical and pneumatic design, to reach 80% glass recovery, with 99% purity, (iii) integrate both, the process line and the glass sorter solution into a demonstrator system, and (iv) validate its feasibility in-house with real MSW coming from different countries, as well as carry-out an 24/7 end-user validation. We, PICVISA, will be the first company to recover the glass fraction in refined MSW worldwide (the niche market exists worldwide) selling Turn-key installations or only SEEGLASS units, contributing to a disruptive change in the sector.
Das Projekt "Depletion of algal toxin-contaminated water using selective biofilters based on plant-produced antibodies (plantibodies)" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Wasserchemie und Chemische Balneologie, Lehrstuhl für Analytische Chemie und Wasserchemie durchgeführt. Although the use of genetically modified plants for bioremediation, or the in situ cleaning of contaminated sites, has been known for quite some time, little attention has so far been paid to the production of antibodies in plants and their ex vivo application in selective depletion. Therefore, highly affine and specific antibodies against algal toxins using microcystin as an example will be produced in plants at low cost within this research project. The basis is a monoclonal antibody (Mab 10E7, species: mouse) generated in a former research project. The sequence of the variable domains will be determined, optimized for plants and sub cloned into suitable plant transformation vectors, which already contain constant antibody sequences. In addition, a scFv fragment containing different tag sequences and fusion proteins will be constructed. Leaf-based (tobacco) as well as seed-based (barley) systems will be used.Affinity-purified plant-produced antibodies (plantibodies) will be characterized in detail for their binding properties using microtitre plate-ELISA and surface plasmon resonance (SPR). The monoclonal mouse antibody will be used as reference. To assure cost-efficiency for future applications, roughly purified fractions (sequential pH and temperature treatment followed by filtration) will be tested for the upscaling. Following immobilization of the plantibody fractions on suitable substrates, for instance membranes, porous polymer monoliths or in porous glasses, their application for depletion will be defined using model water samples spiked fortified with microcystins.
Das Projekt "The role of intermediate sulfur species (ISS) for isotopic fractionation processes during abiotic and chemolithoautotrophic sulfide oxidation in a natural environment" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Catchment Hydrology durchgeführt. Sulfur isotope fractionation (34S/32S) has been used since the late 1940s to study the chemical and biological sulfur cycle. While large isotope fractionations during bacterial sulfate reduction were used successfully to interpret, e.g., accumulation of sulfate in ancient oceans or the evolution of early life, much less is known about fractionation during sulfide oxidation. The fractionation between the two end-members sulfide and sulfate is commonly much smaller and inconsistencies exist whether substrate or product are enriched. These inconsistencies are explained by a lack of knowledge on oxidation pathways and rates as well as intermediate sulfur species, such as elemental sulfur, polysulfides, thiosulfate, sulfite, or metalloid-sulfide complexes (e.g. thioarsenates), potentially acting as 34S sinks.In the proposed project, we will develop a method for sulfur species-selective isotope analysis based on separation by preparative chromatography. Separation of Sn2- and S0 will be achieved after derivatization with methyl triflate on a C18 column, separation of the other sulfur species in an alkaline eluent on an AS16 column. Sulfur in the collected fractions will be extracted directly with activated copper chips (Sn2-, S0), or precipitated as ZnS (S2-) or BaSO4 and analyzed by routine methods as SO2. Results of this species-selective approach will be compared to those from previous techniques of end-member pool determinations and sequential precipitations.The method will be applied to sulfide oxidation profiles at neutral to alkaline hot springs at Yellowstone National Park, USA, where we detected intermediate sulfur species as important species. Determining 34S/32S only in sulfide and sulfate, our previous study has shown different fractionation patterns for two hot spring drainages with sulfide oxidation profiles that seemed similar from a geochemical perspective. The reasons for the different isotopic trends are unclear. In the present project, we will differentiate species-selective abiotic versus biotic fractionation using on-site incubation experiments with the chemolithotrophic sulfur-oxidizing bacteria Thermocrinis ruber as model organism. For selected samples, we will test whether 33S and 36S further elucidate species-selective sulfide oxidation patterns. We expect that lower source sulfide concentrations increase elemental sulfur disproportionation, thus increase redox cycling and isotope fractionation. We also expect that the larger the concentration of intermediate sulfur species, including thioarsenates, the larger the isotope fractionation. Following fractionation in species-selective pools, we will be able to clarify previously reported inconsistencies of 34S enrichment in substrate or product, elucidate sulfide oxidation pathways and rates, and reveal details about sulfur metabolism. Our new methodology and field-based data will be a basis for more consistent studies on sulfide oxidation in the future.
Das Projekt "Climate-Biogeochemistry Interactions in the Tropical Ocean - B8: The role of zooplankton in N-, P- and C- cycling and for the oxygen budget of tropical OMZs" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Zooplankton is a key component of the biological pump and essential for the cycling of nitrogen, phosphorus and carbon in the ocean. Selective partial retention of the macro nutrients nitrogen and phosphorus during the digestion of food feeds back on dissolved nutrient levels in the photic zone. We will study the influence of food quantity and quality in combination with realistic abiotic factor conditions (pO2, pCO2, T) on metabolic activity, excretion and egestion of tropical zooplankton. In combination with field surveys on zooplankton abundance and biomass, this will enable us to quantify the role of zooplankton in N-, P- and C-cycling and for the oxygen budget in the Tropical Eastern North Atlantic and the Peruvian Oxygen Minimum Zone.
Origin | Count |
---|---|
Bund | 26 |
Type | Count |
---|---|
Förderprogramm | 26 |
License | Count |
---|---|
offen | 26 |
Language | Count |
---|---|
Deutsch | 7 |
Englisch | 23 |
Resource type | Count |
---|---|
Keine | 21 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 18 |
Lebewesen & Lebensräume | 24 |
Luft | 13 |
Mensch & Umwelt | 26 |
Wasser | 13 |
Weitere | 26 |