Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Forschungsinstitut Bioaktive Polymersysteme biopos e.V. Forschungsstandort Teltow-Seehof durchgeführt. 1. Vorhabenziel Biopos wird am WP2 des Verbundprojektes teilnehmen. Vorbehandelte Holz-Proben von Eucalyptus und Pappel werden durch enzymatische Hydrolyse charakterisiert und in monomere Kohlenhydrate umgewandelt. 2. Arbeitsplanung Nach Vorbehandlung der LCF-Rohstoffe werden die Einzelzucker (C-5, C-6) mittels enzymatischer Hydrolyse hergestellt und mittels DC und HPLC charakterisiert. Nach der quantitativen Auswertung der erhaltenen isolierten C-5 und C6-Zucker-Gemische werden diese entsprechend der quantifizierten Einzelzucker mit entsprechenden Hefe-Stämmen zu Ethanol fermentiert. Dazu werden Hefen verwendet, die sowohl C-5 als auch C-6 Zucker umsetzen (Saccharomyces cerevisiae zur Fermentation von Glucose and Pichia stipitis zur Fermentation von Xylose). Die Hefe-Stämme werden während der Projektzeit im FI Biopos e. V. kultiviert, so dass eine Fermentation zu Ethanol kontinuierlich möglich ist. Die Ausbeuten an Ethanol werden mittels HPLC (Quantifizierung) und Ermittlung der Gewichtsabnahme (CO2-Bildung) sowie voluminetrisch (CO2-Quantifizierung) bestimmt.
Das Projekt "Pure and modified humic substances exert mild stress and affect Caenorhabditis elegans life-span" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Institut für Biologie, Arbeitsgruppe Gewässerökologie durchgeführt. In Bodenlösungen stellen Huminstoffe (HS) den größten Anteil organischen Kohlenstoffs. Sie werden von Organismen aufgenommen und rufen oxidativen Stress und Stress-Abwehr-Reaktionen hervor. Mit dem Nematoden Caenorhabditis elegans konnten wir zeigen, dass ein solcher Stress in einigen, aber nicht allen Fällen zu einer Lebensverlängerung führte. Als effektive Strukturen werden Polyphenolen vermutet. In diesem Projekt soll C. elegans gegenüber steigenden Konzentrationen von natürlichen und gezielt modifizierten HS exponiert werden. Modifikationen: steigende Konzentrationen an Polyphenolen oder Chinonen; Testparameter: Lebensspanne, Nachkommenzahl, Körperlänge, Lipidgehalt, Regulation bestimmter Stress- und Uhren-Gene. Durch limitierte Futtergaben wird zusätzlich kalorische Restriktion getestet. Um gefundene Ergebnisse abzusichern, werden signifikant induzierte Gene über RNA-Interferenz ausgeschaltet oder es wird mit einschlägigen verfügbaren Mutanten gearbeitet. Für signifikant reprimierte Gene wird ein homologes Überexpressionssystem gewählt. Mit diesen Tieren werden die Expositionsszenarien wiederholt. Um eine mögliche Allgemeingültigkeit der Befunde an C. elegans herauszufinden, soll in einem tschechischen Parallelprojekt die Hefe Saccharomyces cerevisiae getestet werden.
Das Projekt "Konstruktion von Hefen fuer den Nachweis von Cadmiumionen und Entwicklung eines Biosensors zur Messung von Cadmium- und Kupferionen" wird vom Umweltbundesamt gefördert und von Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) durchgeführt. Im Vorhaben wird angestrebt, einen mikrobiellen Sensor zu entwickeln, der Cadmiumionen, eine besonders in Gewaessern vorkommende Umweltbelastung, spezifisch in Form eines positiven Messsignales erfasst. Dazu werden Gene, die bei der Hefe Saccharomyces cerevisiae durch Cadmuimionen induziert werden, mit dem lacZ Gen von E. coli gekoppelt, deren Genprodukt, die beta-Galactosidase, einfach biochemisch erfasst werden kann.
Das Projekt "Schwermetalle in den Abwaessern der Brennerei und Untersuchungen zur Eliminierung" wird vom Umweltbundesamt gefördert und von Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie in Berlin durchgeführt. Im Rahmen des Forschungsvorhabens wurden die Schwermetallgehalte verschiedener Brennereirohstoffe ermittelt. Am Beispiel einer melasseverarbeitenden Brennerei wurde der Weg der Schwermetalle vom Rohstoff ueber die einzelnen Verarbeitungsschritte, Gaerung, Destillation bis hin zur Schlempe bilanziert. Der Einfluss von vier ausgewaehlten Schwermetallen auf die Stoffwechselaktivitaet der Brennereihefe Saccharomyces cerevisiae wurde in Laborexperimenten bestimmt. Den Abschluss der Untersuchungen bildete die Entwicklung eines biologischen Verfahrens, das die Abtrennung von Schwermetallen aus dem organisch hoch belasteten Brennereiabwasser - Melasseschlempe - ermoeglicht. Die Bilanzierung zeigte, dass die im Brennereiabwasser detektierten Schwermetallkonzentrationen primaer auf die eingesetzten Rohstoffe zurueckzufuehren sind. Eine Ueberschreitung der gesetzlichen Grenzwerte nach der Indirekteinleiterverordnung konnte dabei fuer die Metalle Blei, Kupfer, Kobalt, Nickel und Zink beobachtet werden. Ein negativer Einfluss der detektierten Schwermetalle auf den adaptierten Produktionsstamm Saccharomyces cerevisiae konnte nicht nachgewiesen werden. Die Abtrennung der Schwermetalle aus dem Brennereiabwasser wurde durch biologisch induzierte Sulfid-Faellung realisiert. Die Untersuchungen wurden an einer anaeroben Abwasserreinigungsanlage mit einem Gesamtvolumen von 0,2 m3 durchgefuehrt. Bereits in der ersten, hydrolytischen Stufe fand eine quantitative Reduktion von Sulfat zu Sulfid statt. Um eine Hemmung der methanogenen Bakterien der zweiten Stufe zu verhindern, wurde ueberschuessiger Schwefelwasserstoff durch eine mit Kohlendioxid im Gegenstrom betriebene Strippingstufe ausgetrieben. Die Abtrennung des schwermetallsulfidhaltigen Ueberschussschlammes erfolgte durch zweistufige Sedimentation mit Rueckfuehrung. Hierbei fielen je 100 m3 Abwasser etwa 1,3 m3 Ueberschussschlamm an. Die Schwermetallkonzentrationen im Klarlauf wurden dabei im Durchschnitt um einen Faktor 10 im Vergleich zum unbehandelten Abwasser reduziert und die gesetzlichen Grenzwerte zum Teil deutlich, mindestens jedoch um den Faktor 2, unterschritten.
Das Projekt "Ammoniumtransport in Pflanzen: strategisches Modell fuer die Stickstoffeffektivitaet (EURATINE)" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Fakultät für Biologie, Botanisches Institut durchgeführt. Current agriculture requires high inputs of nitrogen fertilizers, causes many secondary problems like nitrate leaching, contamination of the ground water, and the accumulation of nitrate in edible plant parts up to human-toxic concentrations. Therefore, an important future development in agroindustry will be identification or development of plants that are able to efficiently use low nitrogen levels in soils by maintaining high crop yield and quality. NH4+ transporters must play a strategic role in plant nitrogen efficiency. Despite their importance, the first ammonium transporters were cloned just recently, from the yeast Sacchraromyces cerevisiae and the plant Arabidopsis thaliana, by two participants of this project. The two proteins (MEP1/AMT1) are highly similar in sequence and define a new family of transporters also conserved in bacteria and animals. Preferential expression of plant NH4+ transporters in root hairs is strongly indicative of a pivotal role in nitrogen nutrition. EURATINE's objective is to use this recently acquired knowledge to perform an exhaustive molecular analysis of NH4+ transport proteins in the model plant Arabidopsis thailiana and to characterise their role in uptake of NH4+ from the soil and/or from symbiotic bacteria. Ammonium uptake into and efflux from nitrogen-fixing bacteria will also be analyzed with respect to their propensity to modulate legumes. In parallels, a targeted analysis of NH4+ transporters will be carried out in the yeast Saccharomyces cerevisiae, which will be used both as an essential tool to characterise plant transporters and as a model to study regulatory mechanisms in NH4+ transport.
Das Projekt "ERA-IB 4: IPCRES - Integrierte Prozess- und Zelloptimierung für die Industrielle Biotechnologie" wird vom Umweltbundesamt gefördert und von Jacobs University Bremen gGmbH durchgeführt. Die Verwertung von Rohglycerolabfällen kann die Wirtschaftlichkeit der Biodieselproduktion erheblich verbessern. Um dieses Ziel mit Hilfe von Biokatalaysatoren zu erreichen, sind die Umsatzrate von Glycerol zu Produkten, die Integration von Prozessschritten und die Toleranz von Produktionssstämmen gegenüber den Verschmutzungen in Rohglycerol die zentralen Herausforderungen. Zwei wertvolle Produkte sollen aus Glycerol mit Hilfe von modifizierten Hefen als Biokatalysatoren hergestellt werden. Das Konsortium besteht aus industriellen und akademischen Partnern, die Expertisen in Bioprozess- und Zellengineering, in omics Technologien und in der Systembiologie aufweisen. Wir werden die Hefen Saccharomyces cerevisiae und Pichia pastoris mit den erforderlichen Genen/Stoffwechselwegen für die Herstellung von chiralen Aminoalkohole (CAA) und 1,2-Propandiol (PDO) ausstatten. Die Zellen werden sowohl mit Hilfe von Hochdurchsatz-Microscale Prozesstechniken als auch im größeren Maßstab charakterisiert. Daten von Transkriptom- und metabolischen Fluxanalysen werden mit Prozessdaten integriert und die Ergebnisse werden verwendet, um Stoffwechselwege und die 'Chassis'-Organismen zu optimieren. Diese Schritte werden wiederholt und werden eine zweite bzw. dritte Generation von verbesserten Biokatalysatoren hervorbringen. Die neuen Stämme, Prozesse und integrierten Methoden werden für die Biodieselindustrie im speziellen und für die Industrielle Biotechnologie im Allgemeinen von Nutzen sein.
Das Projekt "Konstruktion eines Xylose fermentierenden Hefestammes fuer die Verwertung von Pentose aus Sulfitablauge und aus verzuckertem Holz" wird vom Umweltbundesamt gefördert und von Universität Düsseldorf, Institut für Mikrobiologie durchgeführt. Dieses Projekt beabsichtigt, einen neuen Saccharomyces cerevisiae-Stamm zu konstruieren, der eine Verwertungsmoeglichkeit fuer Xylose bietet. Xylose ist eine Pentose, die waehrend der Zellulosebereitung durch Hydrolyse aus Xylan oder Hemizellulose in sehr grosser Menge entsteht und zZt ungenuetzt, meistens durch Verbrennung beseitigt wird. Mit Hilfe eines Xylose-fermentierenden Hefestammes kann man die Abfallxylose in den allgemeinen Energietraeger Ethanol umsetzen. Das Verfahren sieht vor, mit Hilfe der Gentechnologie 1) Ein Gen fuer Glucose Isomerase oder 2) Ein Xylose-Reduktions-/Oxidationssystem ueber Xylitol, die beide zu Xyloulose fuehren, in S. cerevisiae zu uebertragen. Waehrend der ersten Phase dieses Projektes ist die Analyse der bakteriellen Xylose-Isomerase weit fortgeschritten. Die Vorbereitungen zur Einfuehrung des Xylitolwegs sind abgeschlossen. Die Expression der Gene, die Xylose in Xylulose umwandeln, werden zur Zeit optimiert.
Das Projekt "Entwicklung eines innovativen biotechnologischen Verfahrens zur Herstellung bioabbaubarer Polymere durch erstmaligen Einsatz rekombinanter Hefen - Förderschwerpunkt: Biotechnologie" wird vom Umweltbundesamt gefördert und von Umweltforschungszentrum Leipzig-Halle, Sektion Umweltmikrobiologie durchgeführt. Zielsetzung und Anlass des Vorhabens: Eine kommerzielle Nutzung mikrobiell erzeugter Produkte, wie Polyhydroxyalkanoaten (PHA), im Sinne einer Umweltvorsorge erscheint auf Grund ihrer Eigenschaften, insbesondere wegen ihrer biologischen Abbaubarkeit, und ihrer vielseitigen Anwendungsmöglichkeiten sinnvoll und notwendig. Sie so preiswert zu produzieren, dass sie in der Konkurrenz mit eingeführten Kunststoffen wie Polypropylen oder Polyethylen bestehen, ist eine große Herausforderung an bio-, natur- und ingenieurwissenschaftliche Disziplinen. Weltweit werden Anstrengungen unternommen, dieses Ziel zu erreichen. Sie bestehen in der weiteren Optimierung vorliegender innovativer Verfahren sowie bekannter bakterieller 'Produzenten' und im Screening nach neuen Produzenten. Dabei stellt sich die Frage, wie gut es gelingt, Organismen, die sich bereits in anderen biotechnischen Prozessen bewährt haben und Vorzüge aufweisen, für die Synthese von PHA durch gentechnische Maßnahmen 'aufzubereiten'. Dazu zählt unter anderem die Backhefe Saccharomyces cerevisiae. Sie zur PHA(B)-Synthese zu befähigen, zu der sie als Wildtyp nicht in der Lage ist, wurde bereits erprobt. Dieser Projektvorschlag favorisiert zwei sog. nicht konventionelle Hefen: Arxula adeninivorans, die molekularbiologisch sehr gut untersucht ist und wofür ein Expressionssystem vorliegt, und die oleogene Hefe Debaryomyces hansenii, letztere, da sie bereits über eine metabolisch-regulatorische Prä-Disposition verfügen dürfte. Aufgabe war es, I) durch transformative Übertragung diese Spezies' zur PHB-Synthese zu befähigen, II) die Expression und Leistung(sfähigkeit) der Transformanten zu analysieren und iii) Methoden zum Aufschluss der Zellen und damit zur Gewinnung von PHA zu erproben. Darstellung der Arbeitsschritte und der angewandten Methoden: I): Die einzelnen PHB-Gene von R. eutropha (beta-Ketothiolase, Acetoacetyl-CoA-Reduktase, PHB-Synthase) bzw. das PHB-Synthasegen von M. extorquens wurden sowohl in die Hefe Saccharomyces cerevisiae als Hefe-Modellsystem als auch in Arxula adeninivorans (als einem Modellobjekt für die heterologe Expression in einem 'Nicht-Saccharomyces-Stamm') und in die Fetthefe Debaryomyces hansenii übertragen und dort exprimiert. Durch Nutzung verschiedener Arxula-Stämme ließ sich ein möglicher Einfluss der Zellmorphologie auf die Produktbildung untersuchen. Für die Expression in Debaryomyces hansenii musste zunächst ein Expressionssystem entwickelt werden. Neben dem Nachweis der Aktivitäten der PHB-Enzyme wurde PHB nachgewiesen. Die Untersuchungen zur Expression in D. hansenii wurden, wie bei A. adeninivorans beschrieben, durchgeführt. Und II): Die Rekombinanten Hefen A. adeninivorans D. hansenii wurden batch wise und kontinuierlich vermehrt und die Produktbildung versucht zu provozieren bzw. zu stimulieren. Die Experimente wurden in Schüttelkolben und in Bioreaktoren (Fermentoren) durchgeführt, nur wenige im 'zig-Liter'-Maßstab. ...
Das Projekt "Teilvorhaben JUB: Redoxbilanz" wird vom Umweltbundesamt gefördert und von Jacobs University Bremen gGmbH - Life Sciences & Chemistry durchgeführt. Die Bäckerhefe Saccharomyces cerevisiae hat sich als ein beliebter Produktionsorganismus in der industriellen Biotechnologie etabliert. Dies beruht auf der außergewöhnlichen Einfachheit, mit der man hier zielgerichtete genetische Modifikationen durchführen kann. Tatsächlich konnten bereits einige natürliche Limitationen der Bäckerhefe überwunden werden, die anfangs einer Nutzung von Abfallbiomasse als Rohstoff entgegenstanden. Ein robuster genetisch veränderter Industriestamm, der Inhibitoren in Lignozellulose-haltigen Hydrolysaten tolerieren und neben Glukose auch Xylose zu Ethanol vergären kann, steht als Ausgangsplattform für das YEASTPEC Projekt zur Verfügung. Neben Lignozellulose-haltigen Abfallströmen gibt es preiswerte agro-industrielle Nebenströme, die reich an Pektin sind und daher ebenfalls attraktive Substrate für die industrielle Biotechnologie darstellen. In Europa, ist vor allem das gepresste Fruchtfleisch von Zuckerrüben (Zuckerindustrie) und Früchten (Fruchtsaftindustrie) in hohen Mengen verfügbar. Außer Glukose, sind die Hydrolysate dieser bisher weitgehend unerschlossenen Rohstoffe reich an Galakturonsäure (GalA) und Arabinose. Innerhalb des YEASTPEC Projektes soll ein robuster Industriestamm entwickelt werden, der Enzyme für die Hydrolyse der Polysaccharide in pektinhaltigen Abfällen ausscheiden und alle im Hydrolysat vorherrschenden Zucker, d.h. Glucose, GalA und Arabinose zu Ethanol vergären kann. Das inherente Redoxproblem des Stoffwechselweges für die GalA Vergärung soll durch Zufütterung von Glycerol gelöst werden, wodurch zusätzliche Reduktionsequivalente bereit gestellt werden. Glycerol ist das hauptsächliche Nebenprodukt der gegenwärtigen Biodieselproduktion und steht daher ebenfalls in hohen Mengen preiswert zur Verfügung. Der generierte Industriestamm soll zusätzlich für eine erhöhte Robustheit während der industriellen Fermentation, insbesondere gegenüber schwachen Säuren, verbessert werden.
Das Projekt "ICBio: Optimierung von Biokatalysatoren im Parallelansatz zur Herstellung chiraler Feinchemikalien mit rekombinanten Saccharomyces cerevisiae" wird vom Umweltbundesamt gefördert und von Technische Universität München, School of Engineering and Design, Lehrstuhl für Bioverfahrenstechnik durchgeführt. Zur Gewinnung chiraler Bausteine werden heute überwiegend chemisch katalysierte Reduktionen eingesetzt. Die technische Durchführung erfolgt in der Regel unter extremen, energieintensiven Reaktionsbedingungen, Einsatz giftiger und Umwelt belastender Schwermetallkatalysatoren und Verwendung großer Mengen organischer Lösungsmittel. Auf der anderen Seite zeigen einige Prozessbeispiele, dass die Biokatalyse unter ökonomischen Gesichtspunkten mit der chemischen asymmetrischen Synthese durchaus konkurrieren und dabei ökologische Vorteile aufweisen kann. Besonders das Potential der Bäckerhefe zur stereoselektiven Reduktion vieler (strukturell einfacher) prochiraler Ketone ist auch im präparativen Maßstab gut dokumentiert. Zur effektiveren Durchführung von Hefereduktionen wurde daher ein rekombinanter Hefestamm entwickelt (Coexpression einer Carbonylreduktase und eines Cofaktor-Regenerierungsenzyms). Im Vergleich zu Wildtyp-Zellen konnten damit Biotransformationsgeschwindigkeiten und Ausbeuten effektiv gesteigert werden. Allerdings zeigte sich, dass die erzielbaren Enantioselektivitäten sehr von den Kultivierungsbedingungen bei der Herstellung des Biokatalysators abhängen. Zielsetzung dieses Forschungs- und Entwicklungsvorhabens ist daher die Entwicklung eines effektiven Produktionsverfahrens zur Herstellung von rekombinanten Bäckerhefen für enantioselektive Reduktionen. Prozessbeispiel ist die asymmetrische Reduktion von 4-Cl-Acetessigsäureethylester (4Cl-ACE) zu (S)-4-Cl-3-Hydroxy-Buttersäureethylester (S-CHBE). S-CHBE mit einem Marktvolumen von mehreren 100 jato wird industriell zur Synthese von Cholesterinsenkern eingesetzt. Da zur Optimierung der Herstellung dieses Biokatalysators zahlreiche Experimente im pH-kontrollierten Rührkesselreaktor erforderlich sind, soll eine neue Paralleltechnik weiterentwickelt und eingesetzt werden, die es erlaubt, bis zu 48 pH-kontrollierte Fedbatch-Experimente in parallelen Rührkesselreaktoren automatisiert durchführen zu können.
Origin | Count |
---|---|
Bund | 15 |
Type | Count |
---|---|
Förderprogramm | 15 |
License | Count |
---|---|
open | 15 |
Language | Count |
---|---|
Deutsch | 15 |
Englisch | 1 |
Resource type | Count |
---|---|
Keine | 9 |
Webseite | 6 |
Topic | Count |
---|---|
Boden | 11 |
Lebewesen & Lebensräume | 15 |
Luft | 6 |
Mensch & Umwelt | 15 |
Wasser | 7 |
Weitere | 15 |