Das Projekt "Einsatz der Nah-Infrarot Spektroskopie (NIRS) zur Ermittlung der Masse und Verteilung von Feinwurzeln in Waldböden" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. Feinwurzeln sind für Untersuchungen der Interaktionen von Boden und Pflanze, sowie des unterirdischen Kohlenstoff- und Nährstoffkreislaufs von sehr großer Bedeutung. In der Vergangenheit basierten diese Untersuchungen entweder auf Feinwurzeln, die durch Bohrungen mitsamt Boden gesammelt und anschließend im Labor analysiert wurden, auf Profilmethoden, oder auf der Beobachtung von Feinwurzeln durch (Mini-) Rhizotrone. Letztere Methoden sind in ihren Einsatzmöglichkeiten limitiert und werden Anforderungen an große Probenzahlen nicht gerecht. Bei der Entnahme von Bohrkernen müssen Feinwurzeln zunächst vom Boden getrennt werden, bevor sie nach Art, Vitalität oder Durchmesser sortiert werden. Dies ist sehr zeit- und arbeitsintensiv. Die hohe räumliche und zeitliche Variabilität von Feinwurzelparametern erfordert aber einen hohen Probendurchsatz um zu gesicherten Aussagen zu kommen. In dem beantragten Projekt soll untersucht werden ob die Nahinfrarot-Spektrospkopie (NIRS) eingesetzt werden kann, um Feinwurzeln verschiedener Pflanzenarten, lebende und tote Wurzeln sowie Wurzel und Bodenmaterial anhand ihrer spektralen Eigenschaften zu unterscheiden und zu quantifizieren. Dies würde in Zukunft das aufwendige Sortieren von Wurzelfraktionen oder auch die Trennung von Wurzeln und Boden erübrigen. Diese Vereinfachung kann unser Verständnis der Dynamik des unterirdischen Ökosystems deutlich vorantreiben. Die NIRS Methode zur Feinwurzelbestimmung soll für forstwirtschaftlich bedeutsame Arten und für eine Bandbreite von Standorten durchgeführt werden, die sich in ihren chemischen und physikalischen Eigenschaften unterscheiden.
Das Projekt "Entwicklung der Fehlerschätzungsmethode für Datenassimilation für allgemeine Ozean-Zirkulationsmodelle" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Die 4D-Var Datenassimilation (4D-var DA) ist eine spezielle Methode, die zur Initialisierung von Klima- und Wettervorsagen durch die Schätzung von Klimamodellparametern benutzt wird, in dem Modelle an beobachtende Daten angepasst werden. Aus verschiedenen Gründen führen DA unvermeidliche methodische Fehler ein, die sich auf die Genauigkeit der Modellvorhersagen auswirken. Aktuelle Methoden zur Fehlerkorrektur brauchen erhebliche Computerressourcen. Dies ist ein Grund, warum die Verwendung dieser Methoden in der Klimamodellierung begrenzt ist und sie nur in vereinfachten Versionen angewandt werden. Die Entwicklung einer konzeptuell neuartigen, robusten und effizienten, nichtlinear-variationellen Fehlerschätzungsmethode (NOVFEM) ist Ziel dieses Projekts. Diese Methode wird Fehler von DA Methoden schätzen und die notwendigen Korrekturen bestimmen. Im Besonderen ist es geplant, VOVFEM im Rahmen einer Anwendung in Klimavorhersagesystemen zu entwickeln. Der Vorteil der vorgeschlagenen Methode ist, dass der Algorithmus auf einer abstrakten mathematischen Formulierung basiert und deshalb in vielen geophysikalischen Bereichen angewandt werden kann. Eine weitere Innovation dieses Projekts ist die Entwicklung einer Methode zur schnellen und einfachen Berechnung von inversen Kovarianzmatrizen, die z. B. Anwendung in DA finden. Die vorgeschlagenen Methode ist im Vergleich mit existieren Methoden effizienter. Es wird erwartet, dass die theoretischen Ergebnisse dieses Projekt national und international veröffentlicht werden und ein freier Zugang zur NOVFEM Software wird bereitgestellt werden.
Das Projekt "Mikrobielle Gemeinschaften und Stoffwechselwege, die für den chemolithoautotrophen Energie- und Kohlenstofftransfer am Mittel-Atlantischen Rücken verantwortlich sind" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Biologie, Institut für Pflanzenwissenschaften und Mikrobiologie, Abteilung Mikrobiologie und Biotechnologie durchgeführt. Dieser Antrag bezieht sich auf die Erforschung zeitlicher und räumlicher Variationen chemolithoautotropher Mikroorganismen an verschiedenen Hydrothermalsystemen des Mittelatlantischen Rückens. Generell soll der Transfer von Energie und Kohlenstoff aus der geologischen in die biologische Welt durch mikrobielle Stoffwechselwege untersucht werden. Die Schwerpunkte bilden zum einen die Untersuchung der Funktion der Substrate und der chemischen Fluidkomponenten als Energiequelle für die autotrophen Gemeinschaften und zum anderen die Erforschung der verwendeten CO2 Fixierungswege. In diesem Zusammenhang sind die Epsilonproteobacteria von besonderem Interesse. Um die angeführten Ziele zu erreichen, werden molekularbiologische Methoden wie auch Kultivierungsexperimente verwendet. Die Antragstellerin wird mit Geophysikern, Geochemikern und Geologen kooperieren, da die mikrobiologischen Untersuchungen auf eine gründliche physiko-chemische und mineralogische Charakterisierung des umgebenden Habitats, in dem die chemolithoautotrophen Organismen leben, angewiesen sind. Die Forschungsergebnisse werden unser Wissen zu den frei lebenden chemolithoautotrophen Mikroorganismen und ihrer Funktionalität erweitern, wie auch zu einem besseren Verständnis von geologisch-biologischen Interaktionen an hydrothermalen Tiefseequellen führen.
Das Projekt "CEDIM-Projekt: Hochwasserregionalisierung Sachsen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Durch die kurze Zeitreihen von Abflusszeitreihen und die wenige darin enthaltenen Extremereignissen ergeben sich große Unsicherheiten bei der Abschätzung von Hochwasserereignissen mit einem Wiederkehrintervall größer als 100 Jahren. Für die Ermittlung von seltenen Hochwässern sollte die lokale Hochwasserstatistik an einem Pegel daher durch zusätzliche Informationen gestützt werden. Eine Variante besteht in der Ermittlung von zusätzlichen Stützstellen im Extrapolationsbereich. Diese Stützstellen können durch obere Grenzen von bislang in vergleichbaren Klimaregionen beobachteten Hochwasserabflüssen bereitgestellt werden. Die Regionalisierung von Hochwasserkenngrößen ist eine weitere Methode, um zusätzliche Informationen zu erhalten. Nach dem Prinzip 'trading space for time wird bei einer Hochwasserregionalisierung die limitierte Abflussmessreihe an einem Pegel durch die Hinzunahme von Zeitreihen von benachbarten Pegeln aus einer vergleichbaren hydrologischen Region erweitert. Mit der Methode der Hochwasserregionalisierung können ausgewählte Hochwasserquantile auf unbeobachtete Gebiete übertragen werden. Forschungsziele: Abschätzung von oberen Grenzen durch die Anwendung von empirischen und probabilistischen Hüllkurven; Integration der oberen Grenzen in die Hochwasserstatistik; Entwicklung und Anwendung eines Regionalisierungsansatzes basierend auf Prozesstypen; Ermittlung von ausgewählten Hochwasserquantilen für alle Gemeinden in Sachsen.
Das Projekt "Optimierung der Verbrennungsvorgänge in Stückholzfeuerungsanlagen mittels sensorischer und katalytischer Methoden" wird vom Umweltbundesamt gefördert und von Hochschule Karlsruhe - Technik und Wirtschaft, Institut für Angewandte Forschung durchgeführt. Zielsetzung und Anlass des Vorhabens: Der Energieträger Holz wird vor dem Hintergrund weiter steigender Mineralölpreise für die privaten Haushalte in ländlichen Regionen zunehmend an Bedeutung gewinnen, da die Verfeuerung von Stückholz, sei es in Kachelofeneinsätzen oder in zentralen Stückholzheizkesseln, eine sehr preiswerte Alternative darstellt, wenn das Scheitholz in Eigenarbeit bereitgestellt werden kann. Angesichts der sehr komplexen Scheitholz-Verbrennungsprozesse geht die Verfeuerung von Scheitholz allerdings mit erheblichen Umweltbelastungen einher (Emission von toxischen aliphatischen und aromatischen Kohlenwasserstoffen bei unvollständiger Verbrennung), da die Brennraumgeometrien und Abgasführungen der meisten Verbrennungsanlagen nicht optimiert sind und die Möglichkeiten der sensorgeführten Prozesssteuerung nicht dem Stand der Technik entsprechend genutzt werden. In diesem Förderprojekt haben sich die Antragsteller zum Ziel gesetzt, durch den Einsatz geeigneter Sensoren die Schlüssel-Parameter Verbrennungstemperatur, Restsauerstoffgehalt und CO/HC-Gehalt kontinuierlich und in-situ im Abgas zu messen und diese Daten als Eingangsgröße für die kontinuierliche Regelung der Verbrennungsluft zu nutzen. Hierzu ist ein geeigneter Regelungsalgorithmus zu entwickeln, mit dem es gelingen sollte, die Emission der Schadstoffe pro erzeugte Wärmeeinheit wirksam herabzusetzen. In einem zweiten Schritt werden die Möglichkeiten des Einsatzes eines Oxidationskatalysators zur Unterstützung der Nachverbrennung insbesondere bei niedrigen Verbrennungstemperaturen geprüft. Diese Untersuchungen werden an feuerungstechnisch weitgehend optimierten Verbrennungsanlagen durchgeführt. Unsere Kooperationspartner stellen sowohl eine Kachelofeneinsatz (Typ SF10SK, Brunner GmbH, Eggenfelden) als auch einen Stückholz-Heizkessel (Typ Vitolig 200, Viessmann GmbH, Allendorf) zur Durchführung des Vorhabens zur Verfügung. Fazit: Die Projektergebnisse sprechen für sich und sollten in Anbetracht der hohen Umweltbelastungen durch zunehmende Nutzung von Holzfeuerungsanlagen zur Wärmegewinnung mit Nachdruck im Rahmen der Entwicklung moderner Verbrennungsanlagen umgesetzt werden. Hierzu ist allerdings auch der Gesetzgeber gefordert, die nötigen gesetzlichen Rahmenbedingungen (1. BImSch) vorzugeben.