API src

Found 21018 results.

Related terms

Nacktgerste - wiederentdeckte Quelle für functional foods.

Lebensmittel auf Getreidebasis stellen den Großteil der täglichen Energieaufnahme dar und deren Beitrag zur menschlichen Ernährung und Gesundheit sollte als kumulativ, unmittelbar und signifikant betrachtet werden. Dieser Gedanke ist im Konzept von 'funktionellen Lebensmitteln' verwirklicht. Verantwortlich dafür sind bestimmte Inhaltsstoffe, die nicht als essentiell angesehen werden, aber im Körper eine physiologische Wirkung erfüllen. Nacktgerste, die Gegenstand des angestrebten Projektes ist, verfügt über interessante technologische Eigenschaften und wird aufgrund des hohen Gehalts an Ballaststoffen sowie sekundären Pflanzenstoffen (Polyphenole und Carotinoide) als ernährungsphysiologisch wertvoll betrachtet. Die Getreidewissenschaft beschäftigt sich erst seit kurzem mit dem Thema der sekundären Pflanzenstoffe bzw. deren antioxidativem Potential und aus diesem Grund sind Daten über Gehalt bzw. Eigenschaften in technologischen Prozessen (Herstellung von Lebensmitteln) mangelhaft. Hinzu kommt, dass die meisten Daten in den USA und Kanada erhoben wurden und somit nicht jenen Gehaltsmengen in europäischen Varietäten entsprechen. Neben der Tatsache, dass der Gehalt an Polyphenolen unterschätzt wurde, sehen wir einen Bedarf für dieses Projekt. Das Projekt kombiniert in den drei Arbeitspaketen Analytik, Selektion und Produktion in einem innovativen Ansatz ernährungsphysiologisches, technologisches und agraröko-nomisches Fachwissen. Ausgehend von einer bestehenden Sammlung sollen Genotypen mit einem hohen Gehalt an Ballaststoffen (beta-Glucan) und/oder sekundären Pflanzenstoffen, selektiert werden. Schwerpunkt des Technologie-Arbeitspakets wird das Erfassen von Veränderungen der potentiell gesundheitsfördernden Stoffe, bedingt durch die Verarbeitung, sein. Die Evaluierung der antioxidativen Wirkung der hergestellten Lebensmittel hat zum Ziel, wichtige Beiträge zur Gesundheit und Lebensqualität der Konsumenten zu leisten. Kompetente Forscher aus dem Bereich Landwirtschaft, Technologie, Analytik und Ernährungswissenschaften machen dieses Projekt multidisziplinär. Die Streubreite ernährungsphysiologisch wichtiger und potentiell gesundheitsfördernder Stoffe in Gerstenvarietäten aus konventioneller Züchtung, wird erforscht werden. Langfristig gesehen sollen verbesserte, an heimische Wachstumsbedingungen angepasste Genotypen in die Gen-Pool Datenbank aufgenommen werden. Dadurch kann die österreichische Landwirtschaft in ihrer Diversität und Nachhaltigkeit positiv beeinflusst werden. Die Lebensmittelindustrie ist ihrerseits mit der zunehmenden Globalisierung und der Vereinheitlichung von Nahrungsmitteln konfrontiert, was zu einer Abnahme von lokalen Erzeugnissen führt. Bei erfolgreichem Abschluss der Forschungsarbeiten ist der Weg zum Lebensmittel mit sensorischem und ernährungs-physiologischem Zusatznutzen für den Endkonsumenten bereitet.

Pollutant Release and Transfer Register (PRTR) - Abfall (INSPIRE Download/WFS)

Das PRTR ist ein Schadstoffregister, das darüber informiert, wie viele Freisetzungen von Schadstoffen in Luft, Wasser und Boden, Verbringungen mit dem Abwasser sowie Entsorgung von gefährlichen und nicht gefährlichen Abfällen aus bestimmten industriellen Tätigkeiten erfolgen. Die Daten werden jährlich aktualisiert und auf Thru.de veröffentlicht.

Luftreinhaltung Kraftwerke und Industrie. Regionale Umweltberichterstattung und Modellrechnungen

Vorbeugende Konzepte gegen schaedliche Umwelteinwirkungen, wie sie die grundlegende Novellierung des Luftreinhalteplan-Instrumentariums im BImSchG vom 14 Mai 1990 verstanden wissen will, benoetigen nicht nur bundesweit geltende Grenz- und Leitwerte, sondern regional differenzierte Ansaetze. Der rationellen Energienutzung, dh der Vermeidung von Emissionen ist vor einer Emissionsminderung an der Quelle bzw den Massnahmen zum Passivschutz die hoechste Prioritaet einzuraeumen. Relativ gesicherte Aussagen zur lokalen Belastungssituation und den Entwicklungstrends sind hierzu erforderlich. Forschungsfragen sind: - Wie stellt sich die raeumliche Verteilung der Emissionen im Kraftwerkssektor in der BRD im Jahre 1989 dar? - Welche Veraenderungen ergeben sich im Vergleich zum Jahr 1986, und welche Massnahmen verursachten diese Veraenderungen? - Wie entwickeln sich die Kraftwerksstruktur und Kraftwerkstechnik, die aus der Bruttostromerzeugung und Bruttoengpassleistung resultierenden Vollastbenutzungsstunden und das Einsatzspektrum der verschiedenen Energietraeger bis zum Jahr 2005? - Welche regionalen Schadstoffemissionen sind in diesem Zeitraum zu erwarten? - Welche regionalen Auswirkungen hat ein verstaerkter Ausbau der Kraft-Waerme-Kopplung als energiesparende Technik und die Abkopplung der Stromerzeugung vom Gas und Oel auf die Reduktion der Emissionen? - Welche regionalen Entwicklungen erzeugt eine verstaerkte energetische Nutzung von Abfaellen, die statistisch zu den regenerativen Energien gezaehlt wird, bei den Kraftwerksemissionen, und erfolgen evtl Rueckwirkungen auf das Abfallaufkommen?

Mesoskaliges Netzwerk zur Überwachung von Treibhausgas- und Schadstoffemissionen

Aktuelle wissenschaftliche Studien legen nahe, dass die aktuelle Erderwärmung durch Treibhausgasemissionen hervorgerufen wird, die vom Menschen verursacht sind. Um gegen diese Entwicklung geeignete Maßnahmen ergreifen zu können bzw. um zu überprüfen, ob solche Maßnahmen von Erfolg gekrönt sind, ist es notwendig, die Schadstoffkonzentrationen inklusive der zugehörigen Emissionsquellen genau zu kennen. Diese Informationen sind bisher jedoch sehr lückenhaft und beruhen auf sogenannten 'bottom-up' Berechnungen. Da diese Kalkulationen nicht auf direkten Messungen beruhen, weisen sie große Ungenauigkeiten auf und sind außerdem nicht in der Lage, bisher unbekannte Emissionsquellen zu identifizieren. In dem hier vorgestellten Projekt soll ein mesoskaliges Netzwerk für die Überwachung von Luftschadstoffen wie CO2, CH4, CO, NO2 und O3 aufgebaut werden, das auf dem neuartigen Konzept der differentiellen Säulenmessung beruht. Bei diesem Ansatz wird die Differenz zwischen den Luftsäulen luv- und leewärts einer Stadt gebildet. Diese Differenz ist proportional zu den emittierten Schadstoffen und somit eine Maßzahl für die Emissionen, welche in der Stadt generiert werden.Mithilfe dieser Methode wird es in Zukunft möglich sein, städtische Emissionen über lange Zeiträume hinweg zu überwachen. Damit können neue Informationen über die Generierung und Umverteilung von Luftschadstoffen gewonnen werden. Wir werden u.a. folgende zentrale Fragen beantworten: Wie verhält sich der tatsächliche Trend der CO2, CH4 und NO2 Emissionen in München über mehrere Jahre? Wo sind die Emissions-Hotspots? Wie akkurat sind die bisherigen 'bottom-up' Abschätzungen? Wie effektiv sind die Maßnahmen zur Emissionsreduzierung tatsächlich? Sind vor allem für Methan weitere Maßnahmen zur Reduzierung der Emissionen notwendig? Zu diesem Zweck werden wir ein vollautomatisiertes Messnetzwerk aufbauen und passende Methoden zur Modellierung entwickeln, welche u.a. auf STILT (Stochastic Time-Inverted Lagrangian Transport) und CFD (Computational Fluid Dynamics) basieren. Mithilfe der Modellierungsresultate werden wir eine Strategie entwerfen, wie städtische Netzwerke zur Überwachung von Luftschadstoffen aufgebaut werden müssen, um repräsentative Ergebnisse zu erhalten. Außerdem können mit den so gewonnenen städtischen Emissionszahlen z.B. dem Stadtreferat, den Stadtwerken München oder der Bayerischen Staatsregierung Möglichkeiten zur Beurteilung der Effektivität der angewandten Klimaschutzmaßnahmen an die Hand gegeben werden. Das hier vorgestellte Messnetzwerk dient somit als Prototyp, um die grundlegenden Fragen zum Aufbau eines solchen Sensornetzwerks zu klären, damit objektive Aussagen zu städtischen Emissionen möglich werden. Dieses Projekt ist weltweit einmalig und wird zukunftsweisende Ergebnisse liefern.

Bedeutung von mehrjährigen und nicht mehrjährigen Flüssen für Kohlendioxid- und Methanemissionen bei Regenereignissen und Trocknungs-Wiederbefeuchtungszyklen (StreamFlux)

Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.

Rolle der molekularen Zusammensetzung gelöster organischer Substanz (DOM) zur Identifizierung von Quellen und Freisetzung von DOM und Spurenelementen in Liefergebieten von Trinkwasserseen in Gebirgsregionen der mittleren Breiten (DOMtrace) Ein Festphasen Pyrolyse (Py-GC-MS, THM-GC-MS) Ansatz

Der Anstieg der Konzentrationen von gelöstem organischem Kohlenstoff (DOM) konnte in vielen Oberflächengewässern der temperierten Zonen der Nordhemisphäre nachgewiesen werden. Der Anstieg der DOM-Konzentrationen wird größtenteils auf die schnellere Zersetzung organischer Substanz und den erhöhten Austrag von DOM aus den Böden der Gewässereinzugsgebiete, hier speziell aus Torfmooren, in Flüsse und Seen zurückgeführt. Neben der Bedeutung des DOM im globalen Kohlenstoffkreislauf, auch im Zusammenhang mit Klimaveränderungen, verursacht die 'Gewässerverbraunung' Probleme im Zusammenhang mit der Trinkwassergewinnung. So vermindern hohe DOM-Gehalte, oft auch verbunden mit erhöhten Einträgen DOM-gebundener Schwermetalle, die Trinkwasserqualität und Erhöhen die Kosten der DOM-Entfernung. Obwohl die DOM-Zusammensetzung ein Schlüsselparameter für das Umweltverhalten von DOM ist, ist die Bedeutung seiner molekularen Zusammensetzung in Verbindung mit Landnutzung, Liefergebietsvegetation, Moorhydrologie und Schwermetalltransport kaum verstanden. Zusätzlich sind viele Waldgebiete und Moore in Mittelgebirgen aufgrund von jahrhundertelangem Bergbau oft mit Schwermetallen (Pb, Hg, Zn, etc.) und Arsen belastet. Im vorgeschlagenen Projekt soll das Phänomen des DOM-Anstiegs in Trinkwasserreservoiren am Beispiel der Eckertalsperre und seinem Liefergebiet im Harz untersucht werden. Der Anstieg der DOM-Konzentrationen wird dort bereits seit mehr als 10 Jahren beobachtet. Obwohl allgemein davon ausgegangen wird, dass eine erhöhte Torfzersetzung in Mooren die erhöhten DOM- und Schwermetallausträge verursacht, konnte dieses bisher nicht direkt nachgewiesen werden. Im Rahmen des vorgeschlagenen Projektes soll die molekulare Zusammensetzung von DOM im Eckertalstausee und seiner Zuflüsse, die sowohl schwermetallkontaminierte Moorgebiete als auch Waldböden entwässern, über einen Zeitraum von 12 Monaten regelmäßig zu untersuchen. Ziel ist es, die saisonale und räumlich Variabilität der Austräge und Quellen von DOM und seine Rolle als Transportmedium für Spurenstoffe als Funktion der molekularen DOM-Zusammensetzung zu verstehen. Anders als in früheren Studien wird der Schwerpunkt der Bestimmung der molekularen DOM-Zusammensetzung auf Festphasenanalysen mittel Pyrolyse-GC-MS und Thermally assisted Hydrolysis and Methylation -GC-MS unterstützt von spektroskopischen Methoden und Spurenelementanalysen liegen. Das beantragte Projekt soll somit, durch die Nutzung des Eckertalstausee-Systems als natürliches Labor, durch die Identifizierung der wichtigsten DOM-Quellen und deren chemischer Variabilität eine Lücke im Verständnis des biogeochemischen Verhaltens von DOM in der Umwelt schließen.

Forschergruppe (FOR) 5095: Interaktionen von Schadstoffen, Antibiotikaresistenz und Pathogenen in einem sich ändernden Abwasserbewässerungssystem, Teilprojekt: Auswirkungen von Bewässerungswasserqualität und Bodentyp auf das boden- und pflanzenassoziierte Mikrobiom, Abundanz, Diversität und Übertragbarkeit von Antibiotikaresistenzgenen in gramnegativen Bakterien

Wiederverwendung von Abwasser (AW) in landwirtschaftlicher Bewässerung ist eine effiziente Möglichkeit, Wasser zu sparen und die Nahrungsmittelproduktion für eine wachsende Bevölkerung unter den Bedingungen des Klimawandels zu steigern. Infrastrukturinvestitionen führen in vielen Ländern zu einer Verlagerung von Bewässerung mit unbehandeltem AW hin zu behandeltem AW. SP 5 wird dazu beitragen, die Hypothesen zu prüfen, dass i) die Umweltkonzentrationen von Schadstoffen, die aus dem Boden freigesetzt und von Pflanzen aufgenommen werden, hoch genug sind, um Antibiotikaresistenzen zu selektieren und horizontalen Gentransfer (HGT) in Böden und Pflanzen auszulösen, und ii) der Bodentyp die Freisetzung von Schadstoffen und die damit verbundene Selektion von Antibiotikaresistenzen moduliert. Die Wirkung der Zugabe von behandeltem oder unbehandeltem AW zu Leptosolen, Phäozemen und Vertisolen, die seit >80 Jahren mit unbehandeltem AW bewässert werden, auf Zusammensetzung der mikrobiellen Gemeinschaft und Häufigkeit von Antibiotikaresistenzgenen (ARG) sowie mobilen genetischen Elementen (MGE), die mit gramnegativen Bakterien (GNB) assoziiert sind, wird in einem gemeinsamen Inkubations- und Batch-Experiment in Gesamt-DNA getestet. HGT-Raten zwischen GNB werden für eine Teilmenge von Bodenproben bestimmt. Isolierte Enterobakterien (SP 6) werden auf das Vorhandensein übertragbarer Plasmide gescreent. Die Mobilisierung von ARG zu IncP-1-Plasmiden aufgrund der Selektion durch Antibiotika und Desinfektionsmittel, die dem AW zugesetzt und aus Boden freigesetzt werden, wird in einem Satellitenexperiment getestet. Dabei wird das Bodenbakterium Acinetobacter baylyi BD413, das IncP-1-Plasmide ohne ARG trägt, auf die unterschiedlich behandelten Böden aufgebracht, nach 28 Tagen isoliert und die Plasmide auf erworbene ARG gescreent. Die Relevanz der Pflanzen für Selektion und Ausbreitung von ARG und Transfer in die Nahrungskette wird im gemeinsamen Bodensäulexperiment mit monolithischen, "ungestörten", mit Koriander (Coriandrum sativum) bepflanzten Bodensäulen untersucht. SP 5 wird die Zusammensetzung der mikrobiellen Gemeinschaft in Phyllosphäre und Wurzeln/Rhizosphäre, die relative Häufigkeit von ARG und MGE von GNB und die HGT-Raten zwischen GNB bewerten. SP 5 bringt gleiches Fachwissen und gleiche Techniken in das gemeinsame Feldexperiment mit Koriander bepflanztem Phäozem-Boden ein, um kontrollierte Labor- und Gewächshausversuche mit realen Bedingungen zu verbinden, insbesondere im Hinblick auf Auswirkungen von Bewässerungswasserqualität auf Phyllosphärenbakterien, die unter Gewächshausbedingungen schwer zu untersuchen sind. Durch Verknüpfung der Ergebnisse und Fachkenntnisse mit Daten und Kenntnissen der anderen SP, ebenfalls mit Hilfe des integrierten mathematischen Modells (SP 7), trägt SP 5 zu einem mechanistischen Verständnis der Wechselwirkungen zwischen Schadstoffen, Antibiotikaresistenzen und Pathogenen in sich verändernden AW-Bewässerungssystemen bei.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), MAMAP - CoMet Projektantrag zum Beitrag der Universität Bremen zur HALO Mission CoMet im Rahmen des DFG-Schwerpunktprogramms Atmosphären- und Erdsystemforschung mit dem Forschungsflugzeug HALO (SPP 1294)

Hauptziel des Vorhabens der Universität Bremen ist es, im Rahmen der HALO COMET Mission Antworten auf die Frage zu geben, inwieweit sich starke lokale Quellen der Treibhausgase CO2 und CH4 bzgl. ihrer Emissionen mit Hilfe von Flugzeug-gestützten Fernerkundungsmethoden (aktiv und passive) quantifizieren lassen. Um dies zu erreichen, werden aktive (Lidar) und passive (Spektrometer) Fernerkundungsmethoden mit einander kombiniert. Dabei wird mit dem Sensor MAMAP die Region um die Quelle kleinskalig erfasst, während HALO-COMET den großräumigeren Kontext der atmosphärischen CO2 bzw. CH4 Verteilung in der Atmosphäre erfasst. Der Fokus des Beitrages der Universität Bremen liegt dabei in der kleinskaligen Befliegung der Quellregionen. Aussichtsreiche Quellregionen sind für CO2 die Stadt Berlin und den naheliegenden Kohlkraftwerken im Südosten. Für CH4 eignet sich die Region Oberschlesien in Polen mit ihren aktiven Kohlerevieren und den damit verbundenen starken Methanemissionen besonders. Die Daten der Messkampagne im Frühjahr 2017 werden ausgewertet und analysiert, um daraus mit unterschiedlichen Methoden die CO2-bzw. CH4 Emissionen in der Quellregion zu bestimmen. Dabei werden die Daten von MAMAP und HALO COMET auch synergistisch verwendet, wobei insbesondere den in-situ Messungen zur Verifizierung der Fernerkundungsdaten eine wichtige Rolle zukommt (vgl. auch HALO COMET White Paper). Unterstützt wird die Dateninterpretation zudem durch hochaufgelöste Modellierung in Zusammenarbeit mit dem MPI in Jena.Im Rahmen des Vorhabens wird zudem untersucht, inwieweit die im Rahmen von COMET eingesetzten Fernerkundungssensoren (MAMAP, CHARM-F) zur Validation von Satellitensensoren eignen. Dies erfolgt durch die koordinierte Planung der Messkampagne bzgl. der Satellitenüberflüge von OCO-2 (CO2) und Sentienl-5P (CH4).

Experimental investigations into the influence of organic complexing agents and inorganic anions (Cl-, NO3-, SO42- und PO43-) on the transformation behaviour and the mobility of metallic palladium (Pd) and PdO

The projects goal is to examine the Mobility and transformation behaviour of emitted palladium from automobile exhaust catalysts into the environment. To achieve this, I will examine the influence of commonly present organic complexing agents like citric acid, amino acid (L-Methionin) and ethylenediamine tetra acetic acid (EDTA), as well as inorganic anion species (Cl-, NO3-, SO42- und PO43-), on the chemical behaviour and transformation of metallic palladium (Pd-Mohr) and PdO into more soluble species. The analytical experiments will be conducted over different time periods (1, 10, 20, 30, 40, 50 and 60 days), involving different concentrations of the various complexing agents under examination (0.001, 0.01 and 0.1 M). The results will help clarify the extent to which Pd Mobility is influenced by time and the presence of various complexing agents at different concentrations. In addition, surface analyses of isolated particles using X-ray photoelectron spectroscopy (XPS) will be used to examine the influence of organic compounds and inorganic anion species, on the transformation of metallic palladium and PdO. The proposed study will significantly help to shed light on questions related to the environmental transformation of Pd into more toxic species following emission in car exhausts, a poorly understood process to date.

Gas-Austausch und Reaktive Prozesse in gekoppelten Untergrund/Atmosphäre-Systemen

Der Gasaustausch zwischen der Atmosphäre und dem Untergrund spielt eine Schlüsselrolle für biogeochemische Kreisläufe, Schadstoffausbreitungsdynamiken sowie im Allgemeinen für die Grundwasserqualität. Solche Austauschphänomene an der Grenzfläche zwischen Atmosphäre und Untergrund und ihr Einfluss auf die beschriebenen geochemischen Prozesse sind stark von dynamischen Einwirkungen (z.B. Wärme und Wind) durch die Atmosphäre kontrolliert. Um ein besseres Verständnis für die Grundwasserqualität zu erlangen, vor allem auch im Hinblick auf den Klimawandel und die globale Erderwärmung, müssen daher die Wechselwirkungen zwischen Atmosphäre und reaktiven Strömungs- und Transportprozesse im Untergrund untersucht werden. Das wichtigste Ziel des geplanten Vorhabens ist ein verbessertes Verständnis der Mechanismen, die (a) die atmosphärischen Einwirkungen auf den Austausch gasförmiger Komponenten an der Grenzfläche zum Untergrund kontrollieren, (b) das Ausbreitungsverhalten dieser Komponenten im Untergrund beeinflussen sowie (c) deren chemische Reaktionen mit reaktiven Mineralien im Grundwasser. Unser Schwerpunkt liegt auf dem Austausch und Transport von Mehrkomponenten-Gasgemischen mit Sauerstoff, Kohlenstoffdioxid und Wasserdampf in gekoppelten Systemen aus porösen Medien und freier Strömung. Wir analysieren dabei den Einfluss ihres Transportverhaltens auf mineralische Reaktionen im Untergrund. Konkrete Ziele umfassen (i) die Untersuchung des Einflusses von Wärmetransport auf den Austausch der Komponenten und die Rückkopplung auf die geochemischen Reaktionen, (ii) die Quantifizierung des Einflusses von Wind sowie Rauigkeit auf den Gasaustausch und den reaktiven Transport im porösen Medium; des Weiteren (iii) die Aufklärung der Rolle von physikalischen und chemischen Heterogenitäten auf Evaporation und Verteilung von Fluiden im porösen Medium, sowie auf die Reaktion und Reaktionsrate der Minerale. Die Methodik kombiniert dabei hochauflösende, mehrdimensionale Laborexperimente mit prozessbasierten numerischen Modellen, um die komplexen Interaktionen zwischen physikalischen und geochemischen Prozessen zu charakterisieren und zu quantifizieren. Die Ergebnisse dieses Projekts sind für verschiedene Umweltsysteme relevant, die durch schnell sich verändernde atmosphärische Bedingungen, wie sie durch den Klimawandel erwartet werden, beeinflusst werden; als Beispiele können genannt werden die Versalzung von Böden, die Verwitterung reaktiver Mineralien und geogene Freisetzung von Schadstoffen, Treibhausgasemissionen aus Böden oder auch der Transport von volatilen Schadstoffen.

1 2 3 4 52100 2101 2102