Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Blatt Freiburg-Nord zeigt den südlichen Oberrheingraben mit seinen beiden Flanken: den Vogesen im Westen und dem Schwarzwald im Osten. Der Schwarzwald, an der Ostflanke des Oberrheingrabens, wird von variszischen Graniten, Gneisen und Anatexiten aufgebaut. Bei der variszischen Faltung kam es zur Metamorphose präkambrischer Sedimentgesteine; zudem drangen im Oberkarbon granitische Tiefengesteinsplutone auf. Permische Rhyolithe (Quarzporphyre), die an mehreren Stellen des mittleren und nördlichen Schwarzwald zu finden sind, werden als Ignimbrite interpretiert. Nach Norden und Osten tauchen die Kristallingesteine des Schwarzwaldes unter das permo-mesozoische Deckgebirge. Am Westrand des Kartenblattes ist ein kleiner Teil der Nordvogesen angeschnitten. Der ebenfalls variszisch geprägte Gebirgszug ist von Struktur und Gesteinsaufbau dem Schwarzwald sehr ähnlich, jedoch sind größere Vorkommen paläozoischer Sedimente erhalten geblieben. So sind im Kartenausschnitt neben Graniten, Dioriten und Paragneisen auch kambrische bis silurische Schiefer sowie Schuttsedimente des Rotliegenden erfasst. Der Oberrheingraben durchzieht das Blatt von Südsüdwest nach Nordnordost. Die Grabenstruktur ist mit tertiären Sedimenten verfüllt. Das Tertiär tritt jedoch nur vereinzelt unter der quartären Deckschicht aus Löss- und Flugsanden, fluviatilen bzw. glazifluviatilen Ablagerungen, Verwitterungs- und Schwemmlehm zu Tage. Der Grabenrandbereich wird von den äußeren Randverwerfungen, an denen der vertikale Hauptversatz der Grabenstruktur stattfand, und Bruchfeldern mit Staffelbrüchen geringerer Verwurfshöhe gebildet. In den sogenannten Vorberg-Zonen sind Grundgebirge und permo-mesozoische Bedeckung staffelförmig gegen das Grabeninnere abgesunken und somit, vor Abtragung geschützt, erhalten geblieben. Am Westrand des Oberrheingrabens ist das Bruchfeld von Ribeauvillé, südlich der Vogesen, und das Bruchfeld von Zabern, in der Nordwest-Ecke des Kartenblattes, angeschnitten. Am Ostrand des Grabens sind die Vorbergzone von Emmendingen-Lahr und die Freiburger Bucht erfasst. Mit der Grabenbildung im Tertiär ging ein verstärkter Vulkanismus einher, der seinen Höhepunkt in der Förderung Olivin-nephelinitischer Schmelzen im Vulkangebiet des Kaiserstuhls fand. Die heute stark abgetragene Vulkanruine aus miozänen Vulkaniten und Tuffen ist von pleistozänem Löss ummantelt und teilweise überlagert. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, verdeutlicht eine tektonische Übersichtskarte die geologischen Großeinheiten im Kartenausschnitt. Ein geologischer Schnitt gewährt zusätzliche Einblick in den Aufbau des Untergrundes. Das West-Ost-Profil kreuzt den Oberrheingraben mit dem Kaiserstuhl und der Freiburger Bucht sowie die Kristallingesteine des Schwarzwaldes.
Blatt Freiburg-Nord zeigt den südlichen Oberrheingraben mit seinen beiden Flanken: den Vogesen im Westen und dem Schwarzwald im Osten. Der Schwarzwald, an der Ostflanke des Oberrheingrabens, wird von variszischen Graniten, Gneisen und Anatexiten aufgebaut. Bei der variszischen Faltung kam es zur Metamorphose präkambrischer Sedimentgesteine; zudem drangen im Oberkarbon granitische Tiefengesteinsplutone auf. Permische Rhyolithe (Quarzporphyre), die an mehreren Stellen des mittleren und nördlichen Schwarzwald zu finden sind, werden als Ignimbrite interpretiert. Nach Norden und Osten tauchen die Kristallingesteine des Schwarzwaldes unter das permo-mesozoische Deckgebirge. Am Westrand des Kartenblattes ist ein kleiner Teil der Nordvogesen angeschnitten. Der ebenfalls variszisch geprägte Gebirgszug ist von Struktur und Gesteinsaufbau dem Schwarzwald sehr ähnlich, jedoch sind größere Vorkommen paläozoischer Sedimente erhalten geblieben. So sind im Kartenausschnitt neben Graniten, Dioriten und Paragneisen auch kambrische bis silurische Schiefer sowie Schuttsedimente des Rotliegenden erfasst. Der Oberrheingraben durchzieht das Blatt von Südsüdwest nach Nordnordost. Die Grabenstruktur ist mit tertiären Sedimenten verfüllt. Das Tertiär tritt jedoch nur vereinzelt unter der quartären Deckschicht aus Löss- und Flugsanden, fluviatilen bzw. glazifluviatilen Ablagerungen, Verwitterungs- und Schwemmlehm zu Tage. Der Grabenrandbereich wird von den äußeren Randverwerfungen, an denen der vertikale Hauptversatz der Grabenstruktur stattfand, und Bruchfeldern mit Staffelbrüchen geringerer Verwurfshöhe gebildet. In den sogenannten Vorberg-Zonen sind Grundgebirge und permo-mesozoische Bedeckung staffelförmig gegen das Grabeninnere abgesunken und somit, vor Abtragung geschützt, erhalten geblieben. Am Westrand des Oberrheingrabens ist das Bruchfeld von Ribeauvillé, südlich der Vogesen, und das Bruchfeld von Zabern, in der Nordwest-Ecke des Kartenblattes, angeschnitten. Am Ostrand des Grabens sind die Vorbergzone von Emmendingen-Lahr und die Freiburger Bucht erfasst. Mit der Grabenbildung im Tertiär ging ein verstärkter Vulkanismus einher, der seinen Höhepunkt in der Förderung Olivin-nephelinitischer Schmelzen im Vulkangebiet des Kaiserstuhls fand. Die heute stark abgetragene Vulkanruine aus miozänen Vulkaniten und Tuffen ist von pleistozänem Löss ummantelt und teilweise überlagert. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, verdeutlicht eine tektonische Übersichtskarte die geologischen Großeinheiten im Kartenausschnitt. Ein geologischer Schnitt gewährt zusätzliche Einblick in den Aufbau des Untergrundes. Das West-Ost-Profil kreuzt den Oberrheingraben mit dem Kaiserstuhl und der Freiburger Bucht sowie die Kristallingesteine des Schwarzwaldes.
UBA-Papier zu möglichen "Kipp-Punkten" im Klimasystem Die zunehmende Konzentration der Treibhausgase in der Atmosphäre erwärmt das Klima. Die Lufttemperaturen der bodennahen, atmosphärischen Schichten steigen dadurch an. Werden bestimmte Temperaturschwellen erreicht, könnte das Klimasystem mit abrupten und starken Änderungen reagieren: Grönlands Eismassen schmelzen, der Meeresspiegel steigt an, das arktische Meereis schmilzt, die Arktis selbst erwärmt sich und der Regenwald am Amazonas trocknet zunehmend aus. Ein neues Hintergrundpapier des Umweltbundesamtes (UBA) fasst den Kenntnisstand zu möglichen Gefahren drastischer Klimaänderungen zusammen. „Schon in diesem Jahrhundert drohen uns bei weiter steigenden Temperaturen drastische Klimaänderungen – auch in Deutschland”, sagte Dr. Thomas Holzmann, Vizepräsident des Umweltbundesamtes (UBA). „Wir alle sind Teil eines globalen Experiments mit der Lufthülle unseres Planeten, von dem wir nicht genau wissen, wie es ausgehen wird. Wir müssen den Ausstoß der Klimagase rasch und deutlich senken und uns an den Klimawandel anpassen.”, so Holzmann weiter. Die meisten Menschen denken bei dem Wort „Klimaerwärmung” an einen langsam fortschreitenden Prozess: Schon bei relativ geringen Temperaturanstiegen kann das Klimasystem bereits sogenannte „Kipp-Punkte” erreichen, bei denen es zu abrupten und drastischen Änderungen kommt. Steigende Temperaturen in der Arktis haben zum Beispiel in den letzten 100 Jahren zu einem Rückgang des Meereises geführt. Bei einem weiteren Anstieg der Temperaturen könnte die Arktis im Sommer bald eisfrei sein. Der Kipp-Punkt für eine sommerliche eisfreie Arktis könnte sehr nah oder möglicherweise bereits überschritten sein. Für die in der Arktis lebenden Menschen hätte das schwerwiegende Folgen: Gejagte Tierarten verschwinden, Häuser und Wege werden durch tauende Böden instabil und beschädigt. Eine weitere Erwärmung könnte auch für den Amazonas-Regenwald drastische Folgen haben. Verstärkt durch Waldrodungen und die Tatsache, dass sich Straßen, Ackerland und Weideflächen immer weiter ausbreiten, kann das Ökosystem Regenwald austrocknen und schließlich vollständig zusammenbrechen. Wann genau solche Kipp-Punkte erreicht werden, können Wissenschaftlerinnen und Wissenschaftler jedoch nur schwer bestimmen, da viele natürliche Prozesse noch nicht ausreichend erforscht sind. Jedoch ist sicher: Sind die Veränderungen im Klimasystem zu stark und nicht mehr umkehrbar, könnte eine Anpassung für den Menschen zu spät oder nur unter hohem Aufwand und extrem hohen Kosten möglich sein. Entschlossenes Handeln ist daher zwingend erforderlich: Dazu gehört erstens, den Ausstoß der Treibhausgase in die Atmosphäre deutlich zu reduzieren. Zweitens müssen wir uns an die nicht mehr abwendbaren Folgen des Klimawandels anpassen – zum Beispiel durch die effiziente Nutzung der Wasserressourcen oder die Entwicklung trockenheitstoleranter Kulturpflanzen. Nur so lassen sich die Folgen eines sich ändernden Klimas in Grenzen halten und bewältigen.
Die Georg Fischer Automobilguss GmbH Singen verwendet eine Heißwind-Kupolofenanlage mit Koks als Brennstoff zum Schmelzen und Aufkohlen von Metall. Ein Rekuperator erzeugt den nötigen Heißwind von 600°C, der dann mehrere Schichten Metall und Koks mit Hilfe von eingeblasener Luft im Kupolofen bei rund 2000°C zum Schmelzen bringt. Die im Abgas vorhandenen Schadstoffe werden anschließend verbrannt. Die Abgastemperatur steigt auf bis zu 1200°C an. Dadurch fällt eine erhebliche Wärmemenge im Abgas an, die bislang nur in der Heizperiode und auch dann nur zu einem geringen Teil im Unternehmen genutzt wurde. Mit dem bisherigen Rekuperaturkonzept konnten bis zu 13 MW zurückgewonnen werden. Für den Heißwind wurden ca. 7 MW und für eigene Heizzwecke ca. 6 MW benötigt.
Die Bilder und Berichte über Elektroaltgeräte, die in Asien und Afrika unter schlechtesten Bedingungen „entsorgt“ werden, haben sich in den letzten Jahren gehäuft: Kinder schmelzen unter einfachsten Umständen – über einem offenen Feuer – Bestandteile ausrangierter Computer, um Metalle „zurückzugewinnen“. Frauen zerschlagen Bildschirme mit einem Hammer und sortieren riesige Kabelberge. Veröffentlicht in Hintergrundpapier.
Fast die gesamte Oberfläche des grönländischen Eisschilds taute Mitte Juli 2012 an, das teilte die US-Weltraumagentur NASA mit. Das Ausmaß sei größer als in den letzten 30 Jahren, in denen dieser Prozess mit Satelliten beobachtet werde. Die Daten von drei verschiedenen Satelliten wurden von Fachleuten der NASA und von Universitätsexperten ausgewertet. In einem durchschnittlichen Sommer schmelze das Eis Grönlands natürlicherweise etwa auf der Hälfte der Oberfläche an. Es geht aber größtenteils nicht verloren: In großer Höhe gefriert der Hauptanteil des Wasser schnell wieder und nahe der Küste wird ein Teil des Wassers von Eisbarrieren zurückgehalten, sodass nur wenig in den Ozean abfließt. Aber 2012 hat das Anschmelzen an der Oberfläche einen dramatischen Sprung gemacht. Den Satellitendaten zufolge taute das Eis innerhalb weniger Tage vom 8. bis zum 12. Juli auf etwa 97 Prozent der Fläche an.
Die von der Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Österreich regelmäßig vermessenen Gletscher in den Hohen Tauern sind im Jahr 2015 extrem stark geschmolzen. Die Pasterze am Großglockner, Österreichs größter Gletscher, verlor im unteren Bereich von Herbst 2014 bis Herbst 2015 bis zu zehn Meter Eisdicke. Im Winter fiel im Bereich des Alpenhauptkammes um etwa zehn Prozent mehr Schnee als im vieljährigen Mittel. Aber Österreichs zweitwärmster Sommer der Messgeschichte, der auch der trockenste Sommer seit 1911 war, brachte Schnee und Eis dann extrem zum Schmelzen, berichtet ZAMG. Über den gesamten Gletscher gemittelt, ging die Eisdicke innerhalb dieses Jahres um etwa 1,5 Meter zurück. Das sind die höchsten Werte seit die ZAMG 2004 mit den jährlichen Massenbilanzmessungen begonnen hat. Die Abschmelzraten waren auf allen vermessenen Gletschern in den Hohen Tauern im Bereich der Rekordwerte aus dem Jahr 2003. Unter dem gegenwärtigen Klima wird die Gletscherzunge noch in diesem Jahrhundert überhaupt verschwinden, sagt Gletscherforscher Hynek: "Bei einer maximalen Eisdicke von derzeit rund 200 Metern und einem mittleren Eisdickenverlust von fünf Metern pro Jahr, ist zu erwarten, dass die Gletscherzunge der Pasterze schon bis zum Jahr 2050 fast vollkommen verschwunden sein wird."
Origin | Count |
---|---|
Bund | 1110 |
Land | 34 |
Type | Count |
---|---|
Ereignis | 5 |
Förderprogramm | 728 |
Messwerte | 28 |
Text | 380 |
Umweltprüfung | 18 |
unbekannt | 11 |
License | Count |
---|---|
closed | 63 |
open | 1037 |
unknown | 42 |
Language | Count |
---|---|
Deutsch | 1141 |
Englisch | 110 |
Leichte Sprache | 1 |
Resource type | Count |
---|---|
Archiv | 41 |
Bild | 2 |
Datei | 45 |
Dokument | 76 |
Keine | 378 |
Webdienst | 4 |
Webseite | 693 |
Topic | Count |
---|---|
Boden | 666 |
Lebewesen & Lebensräume | 536 |
Luft | 499 |
Mensch & Umwelt | 1142 |
Wasser | 687 |
Weitere | 1122 |