API src

Found 317 results.

Related terms

Langjährige Entwicklung der Luftqualität 2022

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Das Berliner Luftgütemessnetz existiert seit 1976. Es werden die Jahreskennwerte der gemessenen Stoffe aller aktiven und ehemaligen Stationen statistisch-graphisch aufbereitet, so dass Trends und Entwicklungen ablesbar sind. 03.12.1 Berliner Luftgütemessnetz - Standorte und Messdaten Weitere Informationen Die Emissionen wurden für die lufthygienisch relevanten Schadstoffe NOx, PM10 und PM2,5 neu berechnet und den vorrangigen Verursachern ‚Hausbrand‘, ‚Industrie‘ und ‚Kfz-Verkehr‘ zugeordnet. Es lassen sich somit Verursacheranteile pro dargestelltem Raster von 1 x 1 km² ablesen. 03.12.2 Emissionen 2015 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.1 NOx-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.2 NOx-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.3 NOx-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.4 NOx-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.5 NOx-Gesamtemissionen 2008/2009 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.1 NOx-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.2 NOx-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.3 NOx-Emissionen Hausbrand 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.4 NOx-Emissionen Hausbrand 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.5 NOx-Emissionen Hausbrand 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.1 NOx-Emissionen Industrie 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.2 NOx-Emissionen Industrie 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.3 NOx-Emissionen Industrie 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.4 NOx-Emissionen Industrie 2004 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.5 NOx-Emissionen Industrie 2008 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.1 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.2 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.3 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.4 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.1 NOx-Emissionen Kfz-Verkehr Hauptnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.2 NOx-Emissionen Kfz-Verkehr Nebennetz 2009 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.1 SO2-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.2 SO2-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.3 SO2-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.4 SO2-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.1 SO2-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.2 SO2-Emissionen Hausbrand 1994 Weitere Informationen

Entwicklung Luftqualität - Emissionswerte SO2 1989 bis 2005 (Umweltatlas)

Emissionswerte SO2

13. Energiebericht Rheinland-Pfalz mit Anhang - Berichtszeitraum 2016-2017

Der 13. Energiebericht umfasst u.a. die Darstellung der wichtigsten Handlungsfelder der Energiepolitik, die Landesenergiestatistik der Bilanzjahre 2016–2017, die Entwicklung der Treibhausgasemissionen sowie der energiebedingten Emissionen von SO2 und NOx

12. Energiebericht Rheinland-Pfalz mit Anhang (Berichtszeitraum 2014/2015)

Der 12. Energiebericht umfasst u.a. die Darstellung der wichtigsten Handlungsfelder der Energiepolitik, die Landesenergiestatistik der Bilanzjahre 2014 - 2015 und Energiepreisentwicklung sowie die Entwicklung energiebedingter Emissionen von SO2 und NOx.

14. Energiebericht Rheinland-Pfalz mit Anhang

Der 14. Energiebericht umfasst u.a. die Darstellung der wichtigsten Handlungsfelder der Energiepolitik, die Landesenergiestatistik der Bilanzjahre 2018–2019 sowie der energiebedingten Emissionen von SO2 und NOx.

15. Energiebericht Rheinland-Pfalz

Auf der Grundlage des Beschlusses des rheinland-pfälzischen Landtags (Drucksache 12/1154 vom 18. März 1992) ist in einem zweijährigen Turnus der Energiebericht des Landes Rheinland-Pfalz zu erstellen. Der nunmehr 15. Energiebericht basiert auf den Beiträgen des MKUEM, des Ministeriums für Wirtschaft, Verkehr, Landwirtschaft und Weinbau (MWVLW), des Ministeriums für Bildung (BM), des Ministeriums für Wissenschaft und Gesundheit (MWG), des Ministeriums der Finanzen (FM) sowie des Ministeriums des Innern und für Sport (MdI) sowie des Statistischen Landesamts Rheinland-Pfalz. Die Schwerpunkte des Berichts umfassen die Ziele und die Darstellung der wichtigsten Handlungsfelder der rheinland-pfälzischen Energiepolitik, landesspezifische energiestatistische Daten zur Entwicklung der Energieerzeugung, des Energieverbrauchs und der Energiepreise, die Kurzberichterstattung gemäß § 7 Abs. 2 Nr. 1 Landesklimaschutzgesetz zur Entwicklung der Treibhausgasemissionen im Zeitraum 1990 bis 2021 sowie die Darstellung und Bewertung der Entwicklung energiebedingter Emissionen von SO2 und NOx. Die im 15. Energiebericht Rheinland-Pfalz enthaltenen amtlichen Statistiken und die damit verbundenen statistischen Auswertungen beziehen sich insbesondere auf die Bilanzjahre 2020 und 2021. Der 15. Energiebericht zeigt sehr anschaulich, dass im Berichtszeitraum durch zahlreiche Maßnahmen der Landesregierung die Umsetzung der Energiewende im Land gemeinsam erfolgreich weiter vorangebracht werden konnte. So konnte in den zurückliegenden 10 Jahren der Anteil der erneuerbaren Energien an der Bruttostromerzeugung von circa 30 Prozent in 2011 auf circa 51 Prozent sowie an der Deckung des Bruttostrombedarfs von circa 17 Prozent in 2011 auf über 37 Prozent deutlich gesteigert werden. Gleichzeitig ist der Anteil der Stromimporte zur Deckung des rheinland-pfälzischen Strombedarfs von über 43 Prozent in 2011 auf unter 27 Prozent gesunken.

Nasselektrofilteranlage Sulfitzellstofffabrik

Das Unternehmen Essity Operations Mannheim GmbH ist ein Tochterunternehmen der Essity AB mit Hauptsitz in Stockholm, Schweden. Essity betätigt sich im Hygiene- und Gesundheitsbereich und vertreibt  Produkte und Lösungen in rund 150 Länder. Am Standort in Mannheim betreibt es ein Sulfit-Zellstoffwerk und eine Papierfabrik zur integrierten Produktion von Sulfitzellstoff nach dem Magnesiumbisulfitverfahren und Hygienepapieren. Die bisherige Verfahrenstechnik zur Chemikalienrückgewinnung und Rauchgasreinigung einer Sulfitzellstofffabrik ist sehr komplex und erfolgt in mehreren Stufen. Der Prozess beginnt mit der Verbrennung der bei der Zellstofferzeugung anfallenden Ablauge. Diese enthält die an Schwefel gebundenen Lingninkomponenten (aus Fichten- und Buchenholz) und Magnesiumverbindungen aus dem Magnesiumbisulfit (Kochsäure), welches bei der Zellstoffkochung zum Einsatz kommt. Dabei entstehen neben der Abwärme Schwefeldioxid und Magnesiumoxid. Das entstehende Rauchgas wird über Zyklonabscheider geführt, um einen Großteil des Magnesiumoxids abzuscheiden. Da dies nicht vollständig gelingt, verbleibt nutzbares Magnesiumoxid im Rauchgas und wird in die Umwelt abgegeben. Das Rauchgas durchläuft nun eine 4-stufige Wäsche, bei der Schwefeldioxid aus dem Rauchgas ausgewaschen wird. Das nasse Rauchgas wird über einen 134 Meter hohen Kamin an die Umwelt abgegeben. Nachteile des herkömmlichen Verfahrens sind, dass schadstoffhaltige Aerosole und auch Staub, die nicht abgeschieden werden können, in die Umwelt gelangen. Zusätzlich können die genannten Prozesschemikalien nicht vollständig zurückgewonnen werden. Das Magnesiumoxid setzt sich im Kamin ab. Um diese Nachteile aufzufangen, ist geplant, einen Nasselektrofilter (NEF) zu installieren. Dadurch wird ermöglicht, dass das Rauchgas nach den vier Waschstufen in zwei verfahrenstechnisch voneinander getrennten Prozessschritten über einen Gegenstromwäscher mit darauffolgendem NEF geführt werden kann. Eine solche Prozesstrennung ist mit dem bisher in Sulfitzellstoffwerken üblichen Abgasreinigungsverfahren (Sulfitwäscher) nicht möglich, da hierbei beide Schritte unmittelbar miteinander verknüpft sind. Die Trennung hat den erheblichen Vorteil, dass sich einerseits der Waschprozess und andererseits die Entfernung der Aerosole getrennt auslegen, betreiben und optimieren lassen. Dies führt im Ergebnis zu einer effizienteren Abscheidung der Aerosole. Entsprechend können die Staub- und SO 2 -Emissionen kontrollierter und damit in unterschiedlichen Betriebszuständen reduziert werden. Darüber hinaus soll der Venturi-4-Wäscher um einen weiteren Wäscher bzw. eine zusätzliche Magnesiumoxid-Eindüsung erweitert werden. Dadurch sollen Staub und Schwefeldioxidemissionen weiter reduziert und Prozesschemikalien zurückgewonnen werden. Mit diesem Vorhaben soll der Stand der Technik zur Emissionsminderung für Chemikalienrückgewinnungskessel von Sulfitzellstoffwerken maßgeblich weiterentwickelt und die einschlägigen Emissionsgrenzwerte erheblich unterschritten werden. Es sollen bis zu 50 Tonnen Feinstaub und 50 Tonnen Schwefeldioxid pro Jahr eingespart werden. Dies entspricht jeweils mindestens einer Halbierung der Emissionsmengen in den Abgasen im Vergleich zum bisherigen Stand. Zusätzlich können durch eine erfolgreiche Umsetzung der innovativen Technik 45 Tonnen Magnesiumoxid und ca. 25 Tonnen Schwefel mehr gegenüber dem Stand der Technik zurückgewonnen werden. Daraus soll sich eine Einsparung von rund 104 Tonnen Kohlenstoffdioxid-Äquivalenten, bezogen auf die Primärherstellung von Magnesiumoxid und Schwefeldioxid, ergeben. Branche: Papier und Pappe Umweltbereich: Luft Fördernehmer: Essity Operations Mannheim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2024 Status: Laufend

Fünfzehnter Energiebericht der Landesregierung

Berichtszeitraum der Bilanzen 2020 bis 2021; Factsheet, 1. Einleitung, 2. Ziele der Energiepolitik, 3. Umsetzung der Energiepolitik: u.a. Kommunale Klimaoffensive, Erneuerbare Ernergiequellen, Grüner Wasserstoff, Netzausbau und Entwicklung der Energieinfrastruktur, Energieeffizienz und Energieeinsparung, Flexibilisierung des Energieversorgungssystems, Mobilitätswende, Energieforschung, Förderprogramme, 4. Entwicklung von Energieerzeugung und - verbrauch, 5. Entwicklung der Treibhausgasemissionen 1990 bis 2021, 6. Entwicklung der energiebedingten Emissionen von SO2 und NOx; Anhang zum Bericht

Emissionsminderung bei Großfeuerungsanlagen

Emissionsminderung bei Großfeuerungsanlagen Großfeuerungsanlagen haben aufgrund der großen Brennstoffmengen eine erhebliche Umweltrelevanz. Seit den 1980er Jahren ist es in Deutschland gelungen, die durch sie hervorgerufene Umweltbelastung - insbesondere ihre Emissionen an Staub, Schwefel- und Stickstoffoxiden und Schwermetallen - erheblich zu senken. Technische Maßnahmen erfolgreich In den letzten Jahrzehnten wurden große Anstrengungen unternommen, um die in großen industriellen Anlagen zur Energieumwandlung wie Kraftwerken, Heizkraftwerken und Heizwerken entstehenden Mengen an luftverunreinigenden Stoffen zu senken oder zu vermeiden. Der Vollzug der Verordnung über Großfeuerungsanlagen (13. BImSchV) aus dem Jahre 1983 hat in den 1980er Jahren in den alten und in den 1990er Jahren in den neuen Bundesländern zu einer erheblichen Verbesserung der Umweltsituation beigetragen. Die Betreiber von Altanlagen konnten durch umfangreiche Nachrüstungsmaßnahmen die Emissionen von Schwefeloxiden (SO x ) und Stickstoffoxiden (NO x ) sowie von Staub einschließlich der an ihm anhaftenden Schwermetalle mindern. Neue Anlagen werden von Anfang an mit hochwirksamen Einrichtungen zur Begrenzung dieser Emissionen ausgestattet. Entwicklung der Emissionen von Luftschadstoffen Schwermetalldepositionen werden auch im Luftmessnetz des Umweltbundesamtes (⁠ UBA ⁠) bestimmt. Betreiber von Großfeuerungsanlagen - das sind Feuerungsanlagen mit einer Feuerungswärmeleistung von 50 Megawatt oder mehr - müssen seit 2004 zusätzlich zu den jährlichen Emissionsfrachten von SO x , NO x und Staub auch die Brennstoffeinsätze berichten. Darauf aufbauend übermittelt Deutschland im Rahmen EU-rechtlicher Vorgaben alle drei Jahre eine Zusammenfassung dieser Daten an die EU-Kommission. Der Geltungsbereich der Verordnung wurde 2004 auf Gasturbinenanlagen und 2013 auf Verbrennungsmotoranlagen mit jeweils 50 Megawatt Feuerungswärmeleistung oder mehr ausgedehnt. Erstmals zum Berichtsjahr 2016 verpflichtet die 17. BImSchV auch die abfallmitverbrennenden Großfeuerungsanlagen zur Berichterstattung an den Bund. So hat sich der Kreis der berichtspflichtigen Anlagen stufenweise vergrößert. Die Abbildungen „Entwicklung der jährlichen Emissionsfrachten von Schwefeloxiden aus Großfeuerungsanlagen“ und „Entwicklung der jährlichen Emissionsfrachten von Stickstoffoxiden aus Großfeuerungsanlagen“ zeigen die Wirksamkeit der in den 1980er und 1990er Jahren ergriffenen Maßnahmen zur Emissionsminderung. Den Abbildungen liegen Datenerhebungen zugrunde, die ab dem Jahr 1992 regelmäßig jährlich erhoben werden. Zu diesem Zeitpunkt war in Westdeutschland die Nachrüstung von bestehenden Großfeuerungsanlagen mit Einrichtungen zur Minderung der SO 2 - und NO x -Emissionen bereits weitgehend abgeschlossen. Deutschlandweit sanken die Emissionen von Schwefeldioxid zwischen 1992 und 2022 nochmals um 96,3 %, von rund 2,5 Millionen Tonnen (Mio. t) auf rund 0,1 Mio. t, die Stickstoffoxid-Emissionen nahmen im gleichen Zeitraum um 63,7 %, von rund 0,45 Mio. t auf rund 0,16 Mio. t ab. Der Anstieg der NO x -⁠ Frachten ⁠ zum Jahr 2004 ist auf die ab diesem Zeitpunkt wirksame Einbeziehung von Gasturbinenanlagen in die Berichterstattungspflicht zurückzuführen. Die Einbeziehung der Emissionen von Verbrennungsmotoranlagen ab dem Jahr 2013 wirkt sich wegen der bundesweit sehr geringen Anzahl solcher Anlagen im Geltungsbereich der Verordnung kaum auf die Emissionsentwicklung der Großfeuerungsanlagen aus. Der Anstieg der SO 2 und der NO x -Frachten zum Jahr 2016 ist darauf zurückzuführen, dass abfallmitverbrennende Großfeuerungsanlagen erstmals für das Jahr 2016 zur Berichterstattung ihrer Emissionen verpflichtet sind; zum Teil haben diese Anlagen in den Jahren davor auf freiwilliger Basis ihre Emissionen berichtet. Der in den Jahren 2017 - 2019 erkennbare, beachtliche Rückgang der Emissionen gegenüber 2016 wurde durch zwei Faktoren begünstigt: Zum einen ging in den Kraftwerken der Einsatz von Stein- und Braunkohle bis zum Jahr 2019 merklich zurück, dagegen stieg der Einsatz von Erdgas an. Zum anderen mussten zahlreiche Großfeuerungsanlagen ab 1.1.2016 strengeren emissionsbegrenzenden Anforderungen der 13. und 17. BImSchV entsprechen. Während der Corona-Pandemie, im Jahr 2020, ging die Stromproduktion und damit auch der Einsatz an Stein- und Braunkohlen zurück. Infolgedessen sanken die NO X und SO 2 Emissionen noch einmal deutlich. Der Emissionsanstieg im Jahr 2021 hat verschiedene Gründe. Witterungsbedingt ging die Windstromeinspeisung deutlich zurück. Zugleich stieg der Stromverbrauch im Zuge der wirtschaftlichen Erholung wieder an. Infolgedessen erhöhte sich der Einsatz von Stein- und Braunkohlen in Kraftwerken. Aufgrund der Gaskrise wurde auch im Jahr 2022 mehr Stein- und Braunkohle aber auch mehr Heizöl genutzt, während der Erdgaseinsatz deutlich zurückging. Der dennoch erfolgte Emissionsrückgang ist durch die strengeren Grenzwerte der 13.BImSchV aus dem Jahre 2021 zu erklären. Aktuelle Angaben zu den jährlichen Emissionsfrachten - auch von anderen Schadstoffen - von Standorten mit einer oder mehreren Großfeuerungsanlagen finden sich auf der Webseite Thru.de , die Informationen zu Schadstofffreisetzungen und der Entsorgung von Abfällen sowie zu Emissionen aus diffusen Quellen zusammenführt. Entwicklung der jährlichen Emissionsfrachten von Schwefeloxiden aus Großfeuerungsanlagen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Entwicklung der jährlichen Emissionsfrachten von Stickstoffoxiden aus Großfeuerungsanlagen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten

Nasse Deposition saurer und säurebildender Regeninhaltsstoffe

Nasse Deposition saurer und säurebildender Regeninhaltsstoffe An den Stationen des UBA-Luftmessnetzes wurden von 1982 bis 2022 eine Abnahme saurer und säurebildender Regeninhaltsstoffe sowie eine geänderte Zusammensetzung des Niederschlags beobachtet. Die stärksten Abnahmen zeigten die Säurekonzentration (Oxonium-Ion) und das schwefelhaltige Sulfat. Die stickstoffhaltigen Ionen Nitrat und Ammonium wiesen deutlich geringere Rückgänge auf. Erfassung der nassen Deposition Das Luftmessnetz des Umweltbundesamtes bestimmt die nasse ⁠ Deposition ⁠, also die mit dem nassen Niederschlag (Regen, Schnee) eingetragenen Stoffmengen (Messung mit wet-only-Probenahme). Sie ist kleiner als die Gesamtdeposition, die Ablagerungen von Gasen und Partikeln auf Oberflächen einschließt. Die Langzeitmessungen haben gezeigt, dass sich die Konzentrationen und nassen Depositionen einer Reihe von Ionen im Niederschlag zwischen 1982 und 2022 zum Teil deutlich vermindert haben. Anstieg der pH-Werte Die pH-Werte im Niederschlag an den Stationen Westerland, Waldhof und Schauinsland zeigen im Untersuchungszeitraum einen Anstieg von 4,1 bis 4,6 auf 5,3 – 5,9 (siehe Abb. „Entwicklung des pH-Wertes im Niederschlag an den Messstationen des ⁠ UBA ⁠-Luftmessnetzes“). Ein Anstieg der pH-Werte entspricht einem Rückgang der Konzentrationen von Oxonium-Ionen (H 3 O + ). Der Regen ist heute also deutlich weniger sauer als zu Beginn der 1980er Jahre. Im kürzeren Beobachtungszeitraum seit 1993 ist auch für die Stationen Neuglobsow und Schmücke eine Zunahme der pH-Werte festzustellen. Damit befinden sich die heutigen pH-Werte im Bereich der natürlichen, ohne menschliche Beeinflussung in Mitteleuropa zu erwartenden Werte. Abnahme des Ionengehalts Parallel zum Anstieg der pH-Werte hat der Gesamtgehalt an Ionen und damit die elektrische Leitfähigkeit im Niederschlag zwischen 1982 und 2022 an den Stationen Waldhof und Schauinsland deutlich abgenommen (siehe Abb. „Entwicklung der Leitfähigkeit im Niederschlag an den Messstationen des ⁠ UBA ⁠-Luftmessnetzes“). In Westerland, wo der Gesamtgehalt an Ionen im Niederschlag weitgehend von Seesalz bestimmt wird, wurde eine schwächere relative Abnahme beobachtet. Für die Stationen Zingst, Neuglobsow und Schmücke ist zwischen 1993 und 2022 ebenfalls ein Rückgang erkennbar. Änderung der Ionenverteilung Die Abnahme des Gesamtgehaltes an Ionen im Regen während der letzten vier Jahrzehnte ist mit einer Änderung der relativen Ionenverteilung verbunden. Ein Vergleich zeigt, dass an den Stationen Waldhof und Schauinsland im Jahre 2022 geringere prozentuale Anteile an Oxonium-Ionen (H 3 O + ) und schwefelhaltigen Sulfationen (SO 4 2– ) als in den 1980er Jahren gemessen wurden. Die Anteile der stickstoffhaltigen Ionen Nitrat (NO 3 – ) und Ammonium (NH 4 + ) sind hingegen höher, obwohl deren Konzentrationen absolut ebenfalls abgenommen haben. Die niedrigeren Gesamt-Ionenkonzentrationen und die Verschiebung der prozentualen Ionenanteile sind im Wesentlichen auf die stärkere Verminderung der Emissionen von Schwefeldioxid (SO 2 ) gegenüber Stickoxiden (NO x ) und Ammoniak (NH 3 ) zurückzuführen. Die Konzentrationen von H 3 O + und SO 4 2– haben mit rund 90 % beziehungsweise 80 % (bezogen auf die letzten fünf Jahre) im Untersuchungszeitraum zwischen 1982 und 2022 am stärksten abgenommen. Der Rückgang der Konzentrationen betrug bei NO 3 – und NH 4 + etwa 60 % beziehungsweise 40 % % (bezogen auf die letzten fünf Jahre). In den Abbildungen „Entwicklung der Ionenkonzentrationen an den Messstationen des ⁠ UBA ⁠-Luftmessnetzes“ und „Entwicklung der nassen ⁠ Deposition ⁠ an den Messstationen des UBA-Luftmessnetzes“ sind die auf das Jahr 1982 normierten Konzentrationen und Depositionen der Ionen als mit der Regenmenge gewichtete Mittel über die drei Stationen Westerland, Waldhof und Schauinsland zwischen 1982 und 2022 dargestellt. Entwicklung der Ionenkonzentrationen im Niederschlag (normiert auf 1982) an den Messstationen ... Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Diagramm als Excel mit Daten Entwicklung der nassen Deposition (normiert auf 1982) an den Messstationen des UBA-Luftmessnetzes Quelle: Luftmessnetz des Umweltbundesamtes Diagramm als PDF Diagramm als Excel mit Daten

1 2 3 4 530 31 32