API src

Found 327 results.

Related terms

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - unterhalb von 2 m Tiefe (WMS Dienst)

In dieser Karte wird das Risiko für die Verbreitung von potenziell sulfatsauren Böden unterhalb von 2 m Tiefe bis zur Basis der holozänen Sedimente dargestellt. Wichtig: Diese Karte wurde im Gegensatz zu der Karte für den Tiefenbereich 0-2 m in 2018 nicht neu überarbeitet, aber es werden auch hier die gleichen, neuen Legenden verwendet. Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Für diese Karte gibt es keine Werte östlich von Cuxhaven und Bremerhaven, da deren Datengrundlage, die Geologische Küstenkarte von Niedersachsen, dort ebenfalls endet. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - Tiefenbereich 0-2 m (WMS Dienst)

In dieser Karte wird das Risiko für die Verbreitung von aktuell und potenziell sulfatsauren Böden von 0 bis 2 m Tiefe dargestellt. Wichtig: Diese Karte wurde neu überarbeitet anhand der neuen Bodenkarte BK50, für deren Erstellung insbesondere auch die hier relevanten Küstengebiete neu kartiert wurden. Daher kann es deutlich andere Einschätzungen geben als in der vorherigen Karte der Sulfatsauren Böden (Tiefenbereich 0-2 m). Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - unterhalb von 2 m Tiefe

In dieser Karte wird das Risiko für die Verbreitung von potenziell sulfatsauren Böden unterhalb von 2 m Tiefe bis zur Basis der holozänen Sedimente dargestellt. Wichtig: Diese Karte wurde im Gegensatz zu der Karte für den Tiefenbereich 0-2 m in 2018 nicht neu überarbeitet, aber es werden auch hier die gleichen, neuen Legenden verwendet. Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Für diese Karte gibt es keine Werte östlich von Cuxhaven und Bremerhaven, da deren Datengrundlage, die Geologische Küstenkarte von Niedersachsen, dort ebenfalls endet. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - Tiefenbereich 0-2 m

In dieser Karte wird das Risiko für die Verbreitung von aktuell und potenziell sulfatsauren Böden von 0 bis 2 m Tiefe dargestellt. Wichtig: Diese Karte wurde neu überarbeitet anhand der neuen Bodenkarte BK50, für deren Erstellung insbesondere auch die hier relevanten Küstengebiete neu kartiert wurden. Daher kann es deutlich andere Einschätzungen geben als in der vorherigen Karte der Sulfatsauren Böden (Tiefenbereich 0-2 m). Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Deutsche verbrauchen zu viele Hi-Tech-Metalle

Rohstoffmangel bald Bremsklotz für die wirtschaftliche Entwicklung? Deutschland muss viel sparsamer mit seinen natürlichen Ressourcen und Rohstoffen umgehen, rät das Umweltbundesamt (UBA). „Mit einem Rohstoffverbrauch von 200 Kilo pro Kopf und Tag liegen die Deutschen weltweit mit an der Spitze. Das schadet nicht nur der globalen Umwelt - es ist auch gefährlich für unsere internationale Wettbewerbsfähigkeit. Schon heute liegen die Materialkosten im verarbeitenden Gewerbe bei rund 43 Prozent der Wertschöpfung. Wenn die Rohstoffpreise weiter in die Höhe schnellen, wird dieser Anteil auf Sicht weiter steigen“, sagte UBA-Präsident Jochen Flasbarth zur Eröffnung einer dreitägigen, internationalen Ressourcen-Konferenz in Berlin. Auch die wirtschaftliche Entwicklung könnte durch den weltweiten Rohstoffhunger unter die Räder kommen. Gerade die sogenannten seltenen Erden, dies sind spezielle Hi-Tech-Metalle wie Neodym werden knapper und teurer. Für den Elektromagneten eines modernen, getriebelosen Offshore-Windrades wird je nach Leistung bis zu eine Tonne Neodym benötigt. In den vergangenen sieben Jahren ist der Preis für Neodym von 25.000 Dollar pro Tonne auf rund 700.000 Dollar im Jahr 2012 gestiegen. Auch für die Elektromobilität sind Fahrzeughersteller auf große Mengen Neodym angewiesen. Über 97 Prozent der weltweiten Förderstätten für seltene Erden liegen derzeit in der Volksrepublik China. ⁠ UBA ⁠-Präsident Flasbarth hält es für kurzsichtig, für billige Rohstoffe allein auf gute Handelsbeziehungen zu Lagerstätten im Ausland zu setzen: „Wir brauchen den sparsamsten Einsatz von Rohstoffen bei uns in Deutschland und ein hochwertiges Recycling. Das ist aus Sicht des Umwelt- und Klimaschutzes und bei steigenden Weltmarktpreisen - gerade für viele Metalle - sowohl ein ökologisches wie auch ein ökonomisches Muss.“ Um den Rohstoffverbrauch zu senken, sind mehrere Ansätze möglich: „Warum machen wir es nicht wie im Bereich der Energieeffizienz und legen Mindeststandards für die Rohstoff- und Materialeffizienz von Produkten und Anlagen fest? Langlebige, wiederverwendbare, leicht zu wartende und gut recycelbare Produkte helfen uns, die Wertschöpfung bei sinkendem Ressourceneinsatz zu steigern. Denkbar wäre auch, das material- und rohstoffeffizienteste Gerät seiner Klasse zum Maßstab für alle Geräte zu machen. Das fördert technische Innovation, schont die Umwelt und senkt Kosten“, so Flasbarth. Die Verbraucherinnen und Verbraucher ermuntert das UBA, vor allem Elektrogeräte effizient zu nutzen und einer sachgerechten Entsorgung zuzuführen: „Wir schätzen allein den Materialwert der vielen Millionen Handys in Deutschland, die aussortiert in Schränken und Schubladen schlummern, auf mindestens 65 Millionen Euro. Das ist ein wahres Rohstofflager. Die Handyhersteller sollten ein Interesse haben, möglichst viele alte Handys zu recyceln, anstatt die Rohstoffe für jedes neue Gerät teuer auf dem Weltmarkt einzukaufen“, sagte Flasbarth. Auch die Umwelt würde entlastet - so spart jede Tonne Kupfer, die aus alten Handys zurückgewonnen wird, gegenüber dem Erstabbau über die Hälfte an Energie ein. Außerdem entsteht 50 Prozent weniger Schlacke. Die giftige Schwefelsäure für die Verarbeitung des rohen Kupfers fällt fast ganz weg. Neben Kupfer enthalten Handys und Smartphones auch Edelmetalle wie Gold, Silber und Palladium. Die Förderung und Aufbereitung von Silber oder Gold hat ebenfalls hohe Umweltwirkungen, so kommen gifte Zyanidlaugen zum Einsatz. Bei einzelnen Rohstoffen erreichen die Recyclingquoten in Deutschland bereits beachtliche Werte - so werden 45 Prozent des Stahls wiederverwendet, 50 Prozent der Nichteisen-Metalle und bis zu 94 Prozent bei Glas. Das drückt den Bedarf an neu abgebauten Rohstoffen deutlich, ist aber nicht genug. Vor allem für die Haushalte muss die Rückgabe von Produkten daher einfacher werden. Zwar können ausgediente Produkte schon heute kostenlos bei den Recyclinghöfen der Städte und Gemeinden abgeben werden - viele Menschen empfinden das aber als unpraktisch. Für alte und kranke Menschen ist es ohnehin kaum praktikabel. Deshalb landen immer noch viel zu viele Rohstoffe im privaten „grauen“ Restmüll, obwohl sie hochwertig recycelt werden könnten. Hier könnte eine möglichst haushaltsnahe Sammlung das Recycling attraktiver machen. Neben Metallen ist es vor allem der große Bedarf an Baurohstoffen, wie Steinen, Erden und Hölzern, der den Deutschen eine positivere Rohstoffbilanz pro Kopf verhagelt: „Unter Rohstoff-Gesichtspunkten ist es viel günstiger, ein altes Haus zu sanieren als ein neues zu bauen. Wer ein altes Gebäude saniert, spart rund zwei Drittel an Baumaterialien. Deutschland sollte daher seinen Gebäudebestand intensiver nutzen, anstatt neu zu bauen. Das geht, indem wir davon absehen, immer weitere Neubaugebiete auf der grünen Wiese auszuweisen, sondern die alten Stadtkerne attraktiver machen“, sagte UBA-Präsident Flasbarth. Damit wäre auch dem viel zu hohen Verbrauch der Ressource „Fläche“ Einhalt geboten - hier ist Deutschland „Spitze“: Jeden Tag werden fast 87 Hektar, das entspricht 124 Fußballfeldern, neu versiegelt. Weltweit werden jährlich fast 70 Milliarden Tonnen Rohstoffe gewonnen und eingesetzt. Dies entspricht rund einem Drittel mehr als im Jahr 2000 und doppelt so viel wie Ende der 1970er Jahre. Durch das weitere Ansteigen der Weltbevölkerung und das rasante Wirtschaftswachstum in den Schwellenländern wird die Nachfrage nach Ressourcen weiter zunehmen. Der Pro-Kopf-Konsum von Rohstoffen ist in Europa rund viermal so hoch wie in Asien und fünfmal so hoch wie in Afrika. Während die Industrienationen aber den Großteil der globalen Wertschöpfung erwirtschaften, treffen die ökologischen und sozialen Folgewirkungen der Ressourcennutzung überproportional die Entwicklungsländer. Die intensive Rohstoffnutzung führt zu erheblichen Umweltbeeinträchtigungen, die von der Freisetzung von Treibhausgasen über Schadstoffeinträge in Luft, Wasser und Boden bis zur Beeinträchtigung von Ökosystemen und ⁠ Biodiversität ⁠ reichen. UBA-Präsident Jochen Flasbarth: „Schon jetzt übersteigt die Nutzung von natürlichen Ressourcen die Regenerationsfähigkeit der Erde deutlich. Deshalb wird ein schonender und gleichzeitig effizienter Umgang mit natürlichen Ressourcen zu einer Schlüsselkompetenz zukunftsfähiger Gesellschaften. Eine Steigerung der Ressourceneffizienz wird die Umweltbelastungen begrenzen, die Wettbewerbsfähigkeit der deutschen Wirtschaft stärken, neue Arbeitsplätze schaffen und dauerhaft Beschäftigung sichern.“

Säure-Tanker "Waldhof" kentert auf dem Rhein

Die Waldhof, ein Tanker mit rd. 2400 Tonnen Schwefelsäure an Bord, kenterte am 13. Januar 2011 auf dem Rhein in der Nähe von St. Goarshausen in Rheinland-Pfalz. Sie war im Auftrag der BASF auf dem Weg von Ludwigshafen nach Antwerpen.

Frachter Balu sinkt vor der spanischen Nordküste

Der unter maltesischer Flagge fahrende 24 Jahre alte Frachter Balu sinkt mit 8.000 Tonnen Schwefelsäure an Bord vor der spanischen Nordküste.

Chem-Anorg\Chlor(Diaphragma)-DE-2020

Chlorherstellung (Diaphragmaverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Diaphragmaverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl) oder direkt die Sole aus dem Bergbau. Verunreinigungen des Rohstoffs werden durch Fällung mit Natronlauge oder Soda entfernt. Bei diesem Verfahren trennt ein Diaphragma (Asbest) Anoden- und Kathodenraum. Der Elektrolyt (NaCl in Wasser) wird beim Diaphragmaverfahren im direkten Durchlauf geführt. Die Kochsalzlösung wird zuerst in den Anodenraum gepumpt. Hier entwickelt sich an der Anode (Titan) Chlor, das gekühlt, mit Schwefelsäure getrocknet und komprimiert wird. Der Elektrolyt fließt nun durch das Diaphragma zur Kathode (Stahl). An der Kathode scheidet sich Wasserstoff ab, und es bildet sich Natronlauge. Die resultierende Natronlauge ist jedoch mit NaCl verunreinigt und muß von 12 auf 50 % eingeengt werden, was den Gesamtenergieverbrauch stark erhöht. Während des Eindampfens und Abkühlens der Lösung fällt Natriumchlorid aus, das in den Prozess zurückgeführt wird. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieses Prozesses beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, dass der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für den hier betrachteten Prozess (Diaphragmaverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1438 + 451 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3050 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1525 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Die Chloremissionen in die Luft werden bei (BUWAL 1991) für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,001 g pro kg Produkt (1 kg NaOH 100 % + 0,887 kg Cl2) beziffert. Umgerechnet auf die Chlorherstellung ergibt sich ein Gesamtemissionswert von 0,0011 g Cl2/kg Produkt (1 kg Cl2 + 1,128 kg NaOH 100 %). Für die Bildung der Kennziffern bei GEMIS wurden die obigen Gesamtemissionen je zur Hälfe der Chlor- und der Natronlaugenherstellung zugeordnet. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (2800 kg), dem Prozeßwasser (4300 kg) und dem Kühlwasser (290000 kg) zusammen (Tötsch 1990). Abwasser: BUWAL (1991) gibt für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,002 g BSB5, 0,005 g CSB und 0,006 g Blei pro kg Produkt (1 kg NaOH 100 % + 0,887 Cl2) an. Umgerechnet auf die Chlorherstellung ergeben sich Werte von 0,0023 g BSB5, 0,0056 g CSB und 0,0068 g Blei für 1kg Cl2 + 1,128 kg NaOH 100%ig. Die oben aufgeführten Gesamtwassermengen und Abwasserfrachten wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Chlor(Diaphragma)-DE-2005

Chlorherstellung (Diaphragmaverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Diaphragmaverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl) oder direkt die Sole aus dem Bergbau. Verunreinigungen des Rohstoffs werden durch Fällung mit Natronlauge oder Soda entfernt. Bei diesem Verfahren trennt ein Diaphragma (Asbest) Anoden- und Kathodenraum. Der Elektrolyt (NaCl in Wasser) wird beim Diaphragmaverfahren im direkten Durchlauf geführt. Die Kochsalzlösung wird zuerst in den Anodenraum gepumpt. Hier entwickelt sich an der Anode (Titan) Chlor, das gekühlt, mit Schwefelsäure getrocknet und komprimiert wird. Der Elektrolyt fließt nun durch das Diaphragma zur Kathode (Stahl). An der Kathode scheidet sich Wasserstoff ab, und es bildet sich Natronlauge. Die resultierende Natronlauge ist jedoch mit NaCl verunreinigt und muß von 12 auf 50 % eingeengt werden, was den Gesamtenergieverbrauch stark erhöht. Während des Eindampfens und Abkühlens der Lösung fällt Natriumchlorid aus, das in den Prozess zurückgeführt wird. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieses Prozesses beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, dass der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für den hier betrachteten Prozess (Diaphragmaverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1438 + 451 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3050 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1525 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Die Chloremissionen in die Luft werden bei (BUWAL 1991) für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,001 g pro kg Produkt (1 kg NaOH 100 % + 0,887 kg Cl2) beziffert. Umgerechnet auf die Chlorherstellung ergibt sich ein Gesamtemissionswert von 0,0011 g Cl2/kg Produkt (1 kg Cl2 + 1,128 kg NaOH 100 %). Für die Bildung der Kennziffern bei GEMIS wurden die obigen Gesamtemissionen je zur Hälfe der Chlor- und der Natronlaugenherstellung zugeordnet. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (2800 kg), dem Prozeßwasser (4300 kg) und dem Kühlwasser (290000 kg) zusammen (Tötsch 1990). Abwasser: BUWAL (1991) gibt für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,002 g BSB5, 0,005 g CSB und 0,006 g Blei pro kg Produkt (1 kg NaOH 100 % + 0,887 Cl2) an. Umgerechnet auf die Chlorherstellung ergeben sich Werte von 0,0023 g BSB5, 0,0056 g CSB und 0,0068 g Blei für 1kg Cl2 + 1,128 kg NaOH 100%ig. Die oben aufgeführten Gesamtwassermengen und Abwasserfrachten wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Chlor(Diaphragma)-DE-2010

Chlorherstellung (Diaphragmaverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Diaphragmaverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl) oder direkt die Sole aus dem Bergbau. Verunreinigungen des Rohstoffs werden durch Fällung mit Natronlauge oder Soda entfernt. Bei diesem Verfahren trennt ein Diaphragma (Asbest) Anoden- und Kathodenraum. Der Elektrolyt (NaCl in Wasser) wird beim Diaphragmaverfahren im direkten Durchlauf geführt. Die Kochsalzlösung wird zuerst in den Anodenraum gepumpt. Hier entwickelt sich an der Anode (Titan) Chlor, das gekühlt, mit Schwefelsäure getrocknet und komprimiert wird. Der Elektrolyt fließt nun durch das Diaphragma zur Kathode (Stahl). An der Kathode scheidet sich Wasserstoff ab, und es bildet sich Natronlauge. Die resultierende Natronlauge ist jedoch mit NaCl verunreinigt und muß von 12 auf 50 % eingeengt werden, was den Gesamtenergieverbrauch stark erhöht. Während des Eindampfens und Abkühlens der Lösung fällt Natriumchlorid aus, das in den Prozess zurückgeführt wird. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieses Prozesses beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, dass der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für den hier betrachteten Prozess (Diaphragmaverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1438 + 451 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3050 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1525 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Die Chloremissionen in die Luft werden bei (BUWAL 1991) für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,001 g pro kg Produkt (1 kg NaOH 100 % + 0,887 kg Cl2) beziffert. Umgerechnet auf die Chlorherstellung ergibt sich ein Gesamtemissionswert von 0,0011 g Cl2/kg Produkt (1 kg Cl2 + 1,128 kg NaOH 100 %). Für die Bildung der Kennziffern bei GEMIS wurden die obigen Gesamtemissionen je zur Hälfe der Chlor- und der Natronlaugenherstellung zugeordnet. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (2800 kg), dem Prozeßwasser (4300 kg) und dem Kühlwasser (290000 kg) zusammen (Tötsch 1990). Abwasser: BUWAL (1991) gibt für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,002 g BSB5, 0,005 g CSB und 0,006 g Blei pro kg Produkt (1 kg NaOH 100 % + 0,887 Cl2) an. Umgerechnet auf die Chlorherstellung ergeben sich Werte von 0,0023 g BSB5, 0,0056 g CSB und 0,0068 g Blei für 1kg Cl2 + 1,128 kg NaOH 100%ig. Die oben aufgeführten Gesamtwassermengen und Abwasserfrachten wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

1 2 3 4 531 32 33