API src

Found 239 results.

The Deep Sea & Sub-Seafloor Frontier (DS 3 F)

Das Projekt "The Deep Sea & Sub-Seafloor Frontier (DS 3 F)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Dezernat 3 Haushalt und Finanzen, Dritt- und Sondermittel durchgeführt. Objective: The Deep Sea and Sub-Seafloor Frontier project (DS3F) provides a pathway towards sustainable management of oceanic resources on a European scale. It will develop subseafloor sampling strategies for enhanced understanding of deep-sea and subseafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. Subseafloor drilling and sampling provide two key aspects for understanding how deep-sea ecosystems presently function and how they may respond to global change: (a) an inventory of current subsurface processes and biosphere, and their links to surface ecosystems, utilising seafloor observation and baseline studies and (b) a high resolution archive of past variations in environmental conditions and biodiversity. For both aspects, an international effort is needed to maximise progress by sharing knowledge, ideas and technologies, including mission-specific platforms to increase the efficiency, coverage and effectiveness of subseafloor sampling and exploration. The deep biosphere has been discovered only within the past two decades and comprises a major new frontier for biological exploration. We lack fundamental knowledge about biomass distribution, diversity and physiological activity of deep biosphere communities at life s extremes, and their impact on seafloor and deep sea ecosystems. Similarly, the geodynamic processes fuelling biological activity, and how these processes impinge upon the emission of geofuels, hydrocarbon formation and other resources including seafloor ecosystems, need to be understood. This Coordination & Support Action will develop the most efficient use of subseafloor sampling techniques and existing marine infrastructure to study the geosystem, its effects on the deep biosphere and marine ecosystems, and provide a comprehensive white paper and an open access web portal for a sustainable use of the oceans and a Maritime Policy.

Clean Hydrogen in European Cities (CHIC)

Das Projekt "Clean Hydrogen in European Cities (CHIC)" wird vom Umweltbundesamt gefördert und von EvoBus GmbH durchgeführt. The Clean Hydrogen in European Cities (CHIC) Project is the essential next step to full commercialisation of hydrogen powered fuel cell (H2FC) buses. CHIC will reduce the 'time to market' for the technology and support 'market lift off' 2 central objectives of the Joint Undertaking. CHIC will: - Intensively test the technology to generate learning for the final steps towards commercialisation by operating 28 H2FC buses in medium sized fleets in normal city bus operation and 10 fuel cell passenger cars, and substantially enlarging hydrogen infrastructure in 5 European regions. - Embed the substantial knowledge and experience from previous H2FC bus projects (CUTE & HyFLEET:CUTE). - Accelerate development of clean public transport systems in 14 new European Regions. - Conduct a life cycle based sustainability assessment of the use of H2FC buses in public transport, based on a triple bottom line approach considering environmental, economic and social aspects. - Identify the advantages, improvement potentials, complementarities and synergies of H2FC buses compared with conventional and alternative technologies - Build a critical mass of public support for the benefits of 'green' hydrogen powered transport, leading to increased visibility and political commitment across Europe. The project is based on a staged introduction and build-up of H2FC bus fleets and the supporting infrastructure across Europe. A phased approach will link experienced and new cities in partnerships, greatly facilitating the smooth introduction of the new systems now and into the future. With this arrangement the project will be linked to projects fully funded from other sources and therefore magnifies the impact of the JTI. In the context of the H2FC bus projects and progress achieved to this point, the expected results of CHIC will take the technology to the brink of commercialisation, leading in turn to very significant environmental & economic benefits to Europe and to the World.

Future INternet for Smart ENergY (FINSENY)

Das Projekt "Future INternet for Smart ENergY (FINSENY)" wird vom Umweltbundesamt gefördert und von Nokia Siemens Networks GmbH & Co. KG durchgeführt. Klimaänderungen und begrenzte fossile Brennstoffe treiben die Nachfrage nach smarten Energie-Netzwerken voran, die verlässlich Elektrizität bereitstellen und durch traditionelle Erzeuger sowie Erneuerbare Energien gespeist werden. Dies ist besonders in Deutschland relevant, da hier Initiativen für Elektromobilität und die Abschaltung der Kernkraftwerke vorangetrieben werden. Smart Grids sind der Weg in die Zukunft. Sie basieren auf Integration von Information und Kommunikations-Technologie (IKT) in das Energieverteilnetz, um die Energieversorgung zu steuern und automatisch zu optimieren. 35 der führenden Energie- und IKT-Unternehmen, Forschungszentren und Universitäten aus Belgien, Finnland, Frankreich, Deutschland, Griechenland, Irland, Italien Polen, Spanien, Schweden und der Schweiz haben das FINSENY (Future Internet for Smart ENergY) Konsortium gebildet. Dieses ist ein Teil der Initiative Future Internet Public Private Partnership (FI-PPP) und wird durch die Europäische Union mit unterstützt. Das Forschungskonsortium wird die Anforderungen eines Smart Grid IKT-Systems identifizieren, Referenz-Architekturen entwickeln und zur Entwicklung einer industrieübergreifenden Standardisierung beitragen. Dies wird helfen, eine breite Akzeptanz von smarten Energielösungen in Europa und darüber hinaus sicherzustellen. Die Integration von IKT in die Infrastruktur der Energieversorgung wird Echtzeit-Reaktionen ermöglichen und damit effizient die Volatilität der elektrischen Netzlasten und der Energieerzeugung durch kabellose und optische Kommunikationssysteme bewältigen. Echtzeit-Reaktionsfähigkeit ist notwendig, um Nieder- und Mittelspannungsverteilnetze, die ein essentieller Teil der Smart Grids sind, zu kontrollieren. Die DKE (VDE) deckt dabei den Bereich der Standardisierung ab und analysiert vorhandene und noch zu entwickelnde Standards.

Standardization of Ice Forces on Offshore Structures Design (STANDICE)

Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.

CO2SINK - In-situ Labor zur Untersuchung der Speicherung von Kohlendioxid unter der Erde

Das Projekt "CO2SINK - In-situ Labor zur Untersuchung der Speicherung von Kohlendioxid unter der Erde" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Ketzin ist eine Stadt westlich von Berlin im Land Brandenburg. In ihrer Nähe wurde seit 1960 Erdgas aus Sibirien in unterirdischen Sandsteinschichten zwischengelagert. Diese Erdgasspeicherung wurde vor kurzem eingestellt. Hier soll ein Forschungs- und Entwicklungsprojekt eingerichtet werden, bei dem das Treibhausgas Kohlendioxid (CO2 ) im Untergrund gelagert werden soll. Das Projekt wird vom GeoForschungsZentrum Potsdam koordiniert und von der Europäischen Union mit 8.7 Millionen Euro gefördert. Das Projekt soll helfen, das wissenschaftliche Verständnis der geologischen Speicherung von CO2 weiter zu entwickeln und die im Untergrund ablaufenden Prozesse der CO2 Injektion praktisch zu erforschen. Zunächst werden geologisch-geophysikalisch-geochemische Voruntersuchungen des Standortes und des vorgesehenen Speicherhorizontes sowie eine umfassende Risikoabschätzung vorgenommen um sicherzustellen, dass die Speicherung auch gefahrlos durchgeführt werden kann. Die erforderlichen Bewilligungen des zuständigen Bergamtes, der örtlichen Gemeinde und das Einverständnis der betroffenen Anwohner müssen dazu eingeholt werden. Die künftige Nutzung des Geländes ist Teil eines behördlich bereits genehmigten Bebauungsplans, der auch andere Vorhaben zur Nutzung regenerativer Energie aus Wind, Sonne und Biomasse einschließt. Das CO2 SINK Projekt erlaubt die Weiterverwendung vorhandener Gasspeicher-Infrastrukturen. Geplant ist die unterirdische Injektion von jährlich mehreren 10,000 Tonnen an reinem CO2 für zunächst zwei bis drei Jahre. Das CO2 soll dabei vorwiegend aus regenerativen Biomasse-Energierohstoffen gewonnen werden. Dieses ermöglicht im Prinzip, CO2 aus der Atmosphäre zu entziehen und damit die Treibhausgaskonzentration zu verringern. Unterirdische Erdgasspeicher und geologische Speicher für CO2 in salinen Grundwasserleitern (Aquifere) haben zwei gemeinsame Merkmale: Sie bestehen aus Gestein mit großem Porenraum wie z.B. Sandstein, das von abdichtenden Tonschichten überdeckt ist. Im Untergrundspeicher Ketzin wurde das Erdgas in einer Sandsteinschicht zwischen 250 und 400 Meter Tiefe unter der Erde gelagert. Aus Erkundungsbohrungen und seismischen Messungen weiß man, dass es dort aber noch mindestens eine weitere gut geeignete Speicherschicht in größerer Tiefe gibt. Diese ist rund 80 Meter mächtig und liegt auf einer geologischen Kuppe, die sich bis ungefähr 600 Meter unter der Erdoberfläche aufwölbt. Die Sandsteinschicht fällt nach allen Seiten auf etwa 700 Meter ab und ist von abdichtenden Gips- und Tonschichten überlagert. Um den Untergrund und die bei der CO2 Speicherung darin ablaufenden Prozesse verstehen zu können, ist im Projekt CO2SINK eine umfassende Reihe von wissenschaftlichen Untersuchungen geplant. Usw.

Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)

Das Projekt "Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)" wird vom Umweltbundesamt gefördert und von New Energy Biomasse Hellas GmbH durchgeführt. Objective: The project focuses on the demonstration of an innovative and sustainable CHP concept using residues from olive oil production (olive wastes) as fuel. A first plant based on the new concept will be realised in Greece. The main objective of the project is to demonstrate a closed cycle concept able to reduce landfill problems and emissions and to promote the use of renewable electricity production in Southern Europe. The project will be based on an approach integrating the whole chain (fuel logistics and preparation, energy production, by-product utilisation). An optimised fuel logistic concept will guarantee for a secured fuel supply over the whole year. The fuel will not only be dewatered and dried but also a marketable by-product will be produced. By this means a better fuel quality can be achieved and solid wastes as well as waste- water can be omitted. The development and design of the combustion unit focuses on a technology tailored to the special characteristics of the olive waste.

Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain

Das Projekt "Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.

Solar Steam Reforming of Methane Rich Gas for Synthesis Gas Production (SOLREF)

Das Projekt "Solar Steam Reforming of Methane Rich Gas for Synthesis Gas Production (SOLREF)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. Project main goals: The main purpose of this project is to develop an innovative 400 kWth solar reformer for several applications such as Hydrogen production or electricity generation. Depending of the feed source for the reforming process CO2 emissions can be reduced significantly (up to 40 percent using NG), because the needed process heat for this highly endothermic reaction is provided by concentrated solar energy. A pre-design of a 1 MW prototype plant in Southern Italy and a conceptual layout of a commercial 50 MWth reforming plant complete this project. Key issues: The profitability decides if a new technology has a chance to come into the market. Therefore several modifications and improvements to the state-of-the-art solar reformer technology will be introduced before large scale and commercial system can be developed. These changes are primarily to the catalytic system, the reactor optimisation and operation procedures and the associated optics for concentrating the solar radiation. For the dissemination of solar reforming technology the regions targeted are in Southern Europe and Northern Africa. The potential markets and the impact of infrastructure and administrative restrictions will be assessed. The environmental, socio-economic and institutional impacts of solar reforming technology exploitation will be assessed with respect to sustainable development. The market potential of solar reforming technology in a liberalised European energy market will be evaluated. Detailed cost estimates for a 50 MWth commercial plant will be determined.

Biomass fluidised bed gasification with in situ hot gas cleaning (AER-GAS II)

Das Projekt "Biomass fluidised bed gasification with in situ hot gas cleaning (AER-GAS II)" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Objective: The project aim is a low-cost gasification process with integrated in-situ gas cleaning for the conversion of biomass into a product gas with high hydrogen concentration, high heating value and low tar/alkali/sulphur concentration in one process step for s ubsequent power production. The proposed process uses in-situ CO2 capture (AER, Absorption Enhanced Reforming). It is more efficient than conventional gasification due to (i) the in-situ integration of the reaction heat of CO2 absorption and water-gas shif t reaction heat (both exothermic) into the gasification and (ii) the internal reforming of primary and secondary tars, which cuts off the formation of higher tars. Thus, the chemical energy of tars remains in the product gas. The product gas after dust rem oval can directly be used in a gas engine for electricity generation. Due to the low operation temperature (up to 700 C) and due to CaO-containing bed materials, the proposed process allows the use of problematic feedstocks such as biomass with high minera l and high moisture content, e.g. straw, sewage sludge, etc., leading to an increased market potential for biomass gasification processes. Screening/development of absorbent materials with high attrition stability and tar cracking properties will be carrie d out. Analysis of tar formation/decomposition process will be studied in a lab-scale fixed bed reactor and a 100 kWth circulating fluidised bed reactor (continuous mode). With the acquired data, the 8 MWth biomass plant at Guessing, Austria, will be opera ted with absorbent bed material in order to prove the feasibility of a scale-up and to assess the economical aspects of the process. In order to point out the market potential, the cost reduction of the AER technology will be quantified in comparison with the conventional gasification power plant. Expected results will be: (i) a broad knowledge of the proposed process and (ii) a low-cost technology for biomass gasification with subsequent power production.

Energy Storage for Direct Steam Solar Power Plants (DISTOR)

Das Projekt "Energy Storage for Direct Steam Solar Power Plants (DISTOR)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Objective: Solar thermal power plants represent today's most economic systems to generate electricity from solar insulation in them-range in regions like the Mediterranean area. By demonstrating the feasibility of direct steam generation in the absorber pipes European industry and research institutions have gained a leading position in this technology area. A key element foray successful market penetration is the availability of storage systems to reduce the dependence on the course of solarinsolation. The most important benefits result from -reduced internal costs due to increased efficiency and extended utilisation of the power block-facilitating the integration of a solar power plant into an electrical grid-adoption of electricity production to the demand thus increasing revenues Efficient storage systems for steam power plants demand transfer of energy during the charging/discharging process at constant temperatures. The DISTOR project focuses on the development of systems using phase change materials (PCM) as storage media. In order to accelerate the development, the DISTOR project is based on parallel research on three different storage concepts. These concepts include innovative aspects like encapsulated PCM, evaporation heat transfer and new design concepts. This parallel approach takes advantage of synergy effects and will enable the identification of the most promising storage concept. A consortium covering the various aspects of design and manufacturing has been formed from manufacturers, engineering companies and research institutions experienced in solar thermal power plants and PCM technology. The project will provide advanced storage material based on PCM for the temperature range of 200-300 C adapted to the needs of Direct Steam generation thus expanding Europe's strong position in solar thermal power plants.

1 2 3 4 522 23 24