Die weltweiten Warentransporte werden zu über 90 Prozent auf dem Seeweg abgewickelt. Die Seehäfen dienen den Warenströmen als Anlaufstelle und haben daher eine besondere Bedeutung für den gesamten Welthandel. Auch die deutsche Volkswirtschaft ist auf eine leistungsfähige Infrastruktur der Seehäfen angewiesen, um das Außenhandelsvolumen von jährlich rund zwei Billionen Euro effizient umsetzen zu können. Um die Wettbewerbsfähigkeit deutscher Seehäfen international zu sichern, wurden sie, wie auch ihre Zufahrten, in der Vergangenheit immer wieder an die Anforderungen der modernen Seeschifffahrt angepasst. So wurden seit dem Ende des 19. Jahrhunderts viele Fahrrinnen verändert, beispielsweise an Ems, Jade, Weser und Elbe. Zusätzlich haben umfangreiche Küstenschutzmaßnahmen, wie etwa Eindeichungen, die ursprünglich natürlichen Tideflusssysteme nachhaltig verändert. Auch heute sind noch weitere Fahrrinnenanpassungen für die Unter- und Außenelbe, die Unter- und Außenweser und die Außenems geplant. Die Pläne werden auf Antrag eines Bundeslandes (überwiegend Niedersachsen, Hamburg, Bremen) von der Wasserstraßen- und Schifffahrtsverwaltung (WSV) des Bundes durchgeführt und der Planfeststellungsbehörde zur Genehmigung vorgelegt. Die BAW ist im Auftrag der WSV als Sonderfachgutachter an den Planungen beteiligt. Da Seehafenzufahrten wie beim Hamburger Hafen leicht 100 Kilometer lang sein können, ergeben sich großflächige zusammenhängende Eingriffsflächen. Die geplanten Fahrrinnenanpassungen zählen entsprechend zu den größten Infrastrukturprojekten Deutschlands, bei denen zahlreiche Nutzungskonflikte beachtet werden müssen. Dazu gehört, dass die Seeschifffahrt auf den Tideflüssen in einem besonders schützenswerten Ökosystem stattfindet. Darüber hinaus schließen sich meist Schutzgebiete von nationaler und europäischer Bedeutung an. Fahrrinnenanpassungen können daher komplexe Auswirkungen auf die biotischen und abiotischen Systemparameter eines Tideflusses haben. Im Rahmen der für die Planungen nach nationaler und europäischer Gesetzgebung erforderlichen Umweltverträglichkeitsprüfung besteht somit eine hohe Verantwortung der Gutachter bei der Ermittlung und Prognose der ausbaubedingten Auswirkungen auf das Ökosystem. Hieraus ergibt sich die besondere Bedeutung der BAW-Gutachten: Die von der BAW prognostizierten Auswirkungen auf die abiotischen Systemparameter sind Grundlage für die ökologische Bewertung. So werden durch einen Ausbau der Wasserstand (z. B. Tidehochwasser, Tideniedrigwasser, Sturmflutscheitelwasserstände), die Strömungen und der Salzgehalt beeinflusst. Auch müssen die Auswirkungen auf den Sedimenttransport und das Gewässerbett (Morphodynamik) der von Gezeiten geprägten Flüsse ermittelt werden. (Text gekürzt)
This dataset contains high-resolution (5 cm/pixel) orthomosaics and digital elevation models (DEMs) from unoccupied aerial vehicle (UAV) surveys of biogenic structures in the German Wadden Sea. Two Pacific oyster reefs (Kaiserbalje, Nordland) and one blue mussel bed (Nordstrand) were monitored between 2020 and 2022. The data, processed via structure from motion (SfM) and georeferenced, are provided as raster files (*.tiff), ready for GIS analysis. The Random Forest (RF) classification shapefiles support the mapping of biogenic structures. This dataset facilitates research on biogenic structure growth, sediment dynamics, and geomorphological processes in intertidal environments
Im Rahmen des BMVI-Expertennetzwerks engagiert sich die BAW gemeinsam mit weiteren Ressortforschungseinrichtungen und Fachbehörden des BMVI, um fach- und verkehrsträgerübergreifende Lösungen für die drängenden Verkehrsfragen der Zukunft aufzuzeigen (www.bmvi-expertennetzwerk.de). Ein Fokusgebiet ist dabei der Küstenbereich mit seinen Seehafenzufahrten, denn infolge des zunehmenden Welthandels hat der Seehandel in der heutigen Zeit der Globalisierung eine größere Bedeutung als je zuvor. Internationale Seehäfen, wie zum Beispiel der Hamburger Hafen, bilden im Seehandel wichtige Knotenpunkte. Der Hamburger Hafen ist mit einem Seegüterumschlag von 137 Millionen Tonnen pro Jahr der größte Seehafen Deutschlands. Von hier werden Güter in die ganze Welt verschifft bzw. auf der Schiene, Straße und Wasserstraße nach ganz Deutschland und Europa weitertransportiert. Durch den Klimawandel werden sich für den Betrieb und die Unterhaltung von Seehäfen und Seehafenzufahrten äußere Einflüsse, wie zum Beispiel der Meeresspiegel, ändern. Für strategische und langfristige Investitionsentscheidungen hinsichtlich der Hafeninfrastruktur entstehen dadurch wichtige Fragen. Wie werden sich Meeresspiegelanstieg und andere klimawandelbedingte Änderungen auf die Seehäfen auswirken? Kann die Sicherheit und Leichtigkeit des Schiffsverkehrs sowie die Erreichbarkeit der Häfen in Zukunft gewährleistet werden? Welche Anpassungsmaßnahmen sind gegebenenfalls notwendig und nachhaltig? Mit diesen und anderen Fragen befasst sich die BAW am Standort Hamburg im Rahmen des Expertennetzwerkes. Mithilfe eines hochaufgelösten dreidimensionalen numerischen Modells der Deutschen Bucht werden komplexe Prozesse wie die Tidedynamik sowie der Transport von Salz, Wärme und Sedimenten für heutige und mögliche zukünftige Verhältnisse simuliert. Das Modellgebiet umfasst die gesamte deutsche Nordseeküste und die Ästuare von Ems, Jade-Weser und Elbe. Das Expertennetzwerk ist auch im Hinblick auf die Novellierung des Gesetzes zur Umweltverträglichkeitsprüfung bedeutend. Im Rahmen der Umweltverträglichkeitsprüfung müssen künftig sowohl die Anfälligkeit des geplanten Vorhabens gegenüber den Folgen des Klimawandels als auch die Auswirkungen des Vorhabens auf das Klima auf Basis wissenschaftlicher Erkenntnisse gerichtsfest untersucht werden. Dies kann nur in behördenübergreifender Zusammenarbeit geleistet werden. Wie dringend der Forschungsbedarf für die Seeschifffahrt ist, zeigt die Situation am Hamburger Hafen. Die Zufahrt zum Hamburger Hafen erfolgt entlang des Elbeästuars. Da die Flutstromgeschwindigkeiten in vielen Bereichen des Elbeästuars höher als die Ebbestromgeschwindigkeiten sind, ist der stromaufgerichtete Sedimenttransport im Mittel größer als der stromabgerichtete Sedimenttransport. Es wird mehr Sediment aus der Nordsee in das Elbästuar eingetragen als ausgetragen. (Text gekürzt)
Zur Halbzeit eines BAW-Forschungsprojektes zum 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht' werden erste Ergebnisse sichtbar. Transportprozesse im Wandel der Zeitläufe: Wie werden sich die Watten und Vorländer der deutschen Nordseeküste anpassen, sollte in Folge des Klimawandels der Meeresspiegel steigen? Eine Antwort auf diese Frage ist nicht nur für die Sicherheit der Seedeiche bedeutsam, sondern auch für die Zufahrten zu den Seehäfen. Einerseits beeinflusst das Flachwasser im Ästuarbereich maßgebend das Tide- und Sedimentregime in den Tideflüssen und hat somit Auswirkungen auf die zukünftige Unterhaltung der Seehafenzufahrten. Zum anderen hat sich gezeigt, dass in einer Betrachtung über Jahrzehnte hinweg die kleinräumigen Transportprozesse in der Deutschen Bucht und in den Außenbereichen der Ästuare auch durch die Transportprozesse, die in der gesamten Nordsee stattfinden, mitgeprägt werden. Die Dimension dieser weiträumigen Transportprozesse in der Nordsee wird in der Satellitenaufnahme der oberflächennahen Ausbreitung der Schwebstofffahnen aus den Ästuarmündungen deutlich (Bild 1). Allerdings entzieht sich dieses Phänomen noch weitgehend der fachwissenschaftlichen Betrachtung, denn über die tatsächlichen Transportprozesse in der Nordsee, zumal in der Deutschen Bucht, ist wenig bekannt: Es fehlen zum Beispiel grundlegende, flächendeckende Informationen über das anstehende Material an der Gewässersohle, über den Bodenaufbau oder über die relevanten Kräfte, die den Transport antreiben, wie Wind und Seegang. Und schließlich fehlen die geeigneten Werkzeuge, um die komplexen Transportprozesse berechnen zu können. BAW hat Federführung bei Forschungsprojekt: Im Rahmen eines im Wettbewerb ausgeschriebenen Forschungsschwerpunktes des Kuratoriums für Forschung im Küsteningenieurwesen (KFKI) konnte sich die BAW mit einem Forschungsantrag zum Thema 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der deutschen Bucht (AUFMOD)' durchsetzen. An dem Projekt unter Federführung der BAW beteiligen sich weitere neun Kooperationspartner. Gestartet Ende 2009, läuft die Förderung zunächst bis 2012 (siehe: www.kfki.de/prj-aufmod/de).
SeeWandel-Klima: Modellierung der Folgen von Klimawandel und Neobiota für den Bodensee SeeWandel-Klima hat zum Ziel, aktualisierte Vorhersagen der Folgen des Klimawandels - unter Einbezug der Auswirkungen von invasiven Arten - auf das Ökosystem Bodensee und dessen nachhaltige Nutzung zu liefern. Die Projektarbeiten in SeeWandel-Klima sind in 9 Teilprojekten organisiert. Zentral sind Modellierungsarbeiten, mit dem Ziel komplexe Folgen von Faktoren wie Klimaänderungen und invasiven Arten sowie deren Zusammenspiel für das Ökosystem Bodensee und dessen Nutzung vorhersagen zu können. Die dafür notwendige Bereitstellung robuster Parameter und Erkenntnisse zur Entwicklung solch prognosefähiger Modellsysteme erfolgt seitens verschiedener Teams von Forschenden. Teilprojekt 1: Vergangene Klimaänderungen im Bodensee – Lehren für die Zukunft Seesedimente sind ein hochauflösendes Archiv für Umweltänderungen, die nicht mit historischen Quellen und mit Messdaten belegt sind. Sie können darum helfen, das Ausmaß heute beobachteter Veränderungen besser zu verstehen, um sich auf zukünftige Veränderungen sinnvoll vorzubereiten. Das Teilprojekt wird erstmalig eine detaillierte Hochwasserchronologie des Bodensees und damit der Niederschlagshistorie seines alpinen Einzugsgebietes erarbeiten. Heute verwendbare neue Untersuchungsmethoden sollen gezielt genutzt werden, um die Hochwassergeschichte des Bodensees und Alpenrheins mit hohem Detaillierungsgrad in prähistorische Zeiträume zu verlängern. Damit lassen sich extreme Hochwasserereignisse und Jahre mit sehr geringen Zuflüssen durch den Alpenrhein identifizieren. Untersuchungen von Sedimentkernen sind zudem der einzig mögliche Ansatz, um Informationen zum Ökosystem Bodensee aus messtechnisch nicht erfassten Zeiträumen zu gewinnen, und von historischen menschlichen Aktivitäten (Landnutzung, Wasserkraft, Wasserbau, Eutrophierung) unbeeinflusste Zeiträume zu analysieren. So lässt sich aus der Vergangenheit für die zukünftige Entwicklung lernen, um eine nachhaltige Entwicklung zu ermöglichen. Die Brücke in die Ökosysteme der Vergangenheit bilden Schalen von Kieselalgen, Muschelkrebsen und Reste von Cladoceren, die über tausende Jahre im Sediment erhalten sein können und seit etwa 50 Jahren regelmäßig im Wasser untersucht werden. Diese Organismenreste werden in einzelnen Zeitabschnitten im Sediment bestimmt und nach Möglichkeit mit eDNA-Untersuchungen ergänzt. Ziel 1: Eine aus Sedimenten abgeleitete Hochwasserchronologie für die letzten 5000 Jahren soll als Grundlage für Hochwasserstatistiken und -gefährdungen am Bodensee etabliert werden. Ziel 2: Die Reaktion der aquatischen Lebensgemeinschaften auf von menschlichen Aktivitäten unbeeinflusste Klimaveränderungen der Vergangenheit soll für die Bewertung der heute beobachteten Veränderungen erfasst werden.
Die Verschmutzung der marinen Umwelt durch organische UV Filter ist wissenschaftlich zunehmend besorgniserregend. Studien haben gezeigt, dass UV Filter potentielle negative Effekte auf Organismen haben können. Dies führte bereits zu ersten Anwendungsverboten einiger UV Filter in Sonnenschutzmitteln auf Palau und Hawaii. Die Ostsee ist eine beliebte Urlaubs- und Freizeitregion. Sie ist einem hohen anthropogenen Druck durch Verschmutzung ausgesetzt. Jener wird zusätzlich dadurch verstärkt, dass eingetragene Schadstoffe sich in der Ostsee anreichern. Zum jetzigen Zeitpunkt gibt es jedoch nur wenige Studien über das Auftreten und das Langzeitverhalten von UV Filtern in der Ostsee. Der Fokus dieses Projektes soll es sein, ein grundlegendes, besseres Verständnis über das Verhalten und den Verbleib von UV Filtern in der Ostsee zu erlangen. Bisher wurden sie nur in Küstennähe (Wasserphase) und der offenen Ostsee (Oberflächensediment) detektiert. UV Filter werden hauptsächlich über die Wasserphase direkt bzw. indirekt in die Ostsee eingetragen. Es ist zurzeit nicht belegt, ob diese in der Wasserphase von küstennahen Gebieten bis in die offene Ostsee transportiert werden, ob sie in Buchten akkumulieren und ob es räumlich stark belastete Gebiete gibt. Der Schlüssel zu einem besseren Verständnis von möglichen Transportprozessen ist die Untersuchung der UV Filterdynamiken zwischen den einzelnen Kompartimenten Wasser, Sediment und Biota. Es ist hinreichend bekannt, dass Schadstoffe wie z. B. persistente organische Schadstoffe mit der Frühjahrs- und Sommerblüte im Meerwasser abgereichert und mit der absinkenden Biomasse im Sediment angereichert werden. Dieser Prozess kann auch für den Transport von UV Filtern aus der Wasserphase ins Sediment von großer Bedeutung sein. Es wird angenommen, dass UV Filter an Sedimenten adsorbieren können, welche somit als Senke für sie fungieren könnten. Die Funktion der Sedimente als langzeitige Senke wurde bisher noch nicht eingehend untersucht. Die Erforschung von UV Filtern in unterschiedlichen Sedimentschichten im Zusammenhang mit einer Altersdatierung der Sedimente ist relevant, um die Bedeutung der Sedimentsenkenfunktion und den Verbleib von UV Filtern in der marinen Umwelt zu studieren. Zusätzlich wird die Möglichkeit eröffnet, die Anreicherung von UV Filtern in der Biomasse zu analysieren, um so den Transportprozess aus der Wasserphase ins Sediment zu untersuchen. Mehrere Kampagnen sind geplant, um die Wasser- und Sedimentphase und die Biomasse (Algenblüten) zu unterschiedlichen Jahreszeiten zu beproben. Die UV Filter-Konzentrationen werden mittels moderner analytischer Verfahren quantifiziert und qualifiziert. Die Ergebnisse werden grundlegend dazu beitragen (i) die regional belasteten Gebiete zu identifizieren, (ii) die Transportprozesse von UV-Filtern zwischen den einzelnen Kompartimenten Wasser, Sediment und Biota besser zu verstehen und (iii) die Bedeutung der Sedimente als Langzeitsenke zu demonstrieren.
Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.
Der Western Boundary Undercurrent (WBUC) ist eine kritische Komponente der globalen Umwälzzirkulation und wird durch Tiefenwasserbildung in der Grönland-, Labrador-, Island- und Norwegischen See angetrieben. Seismische Profile der Eirik Drift weisen auf eine hohe Variabilität der Geschwindigkeiten und Strömungspfade des WBUC seit dem frühen Miozän hin und geben Hinweise auf das Gebiet der Tiefenwasserbildung vom Miozän bis heute. Wir beabsichtigen die Mechanismen, welche in der Verschiebung der Gebiete der Tiefenwasserbildung und der Verschiebung der Strömungspfade des WBUC involviert sind, zu identifizieren. Korngrößen sind für ODP Leg 105 und die IODP Expedition 303 Sites U2305-2307 in der Eirik Drift verfügbar (iodp.tamu.edu). Die Unterscheidung in Ton (kleiner als 0.004 mm), Schlamm (0.004-0.063 mm) und Sand (mehr als 0.063 mm) ist ausreichend um Geschwindigkeiten des WBUC für verschiedene Zeitscheiben abzuleiten. Dreidimensionale Geschwindigkeiten und Sedimenttransporte werden mit dem Regional Ocean Modelling System (ROMS) simuliert. ROMS wird auf den Nordatlantik regionalisiert werden und dabei detaillierte Informationen über Gebiete der Tiefenwasserbildung und Ozeanzirkulation liefern. Seismische Profile aus der Eirik Drift (Uenzelmann-Neben (2013)) stellen Horizonttiefen, Schichtdicken und Position und Orientierung von Depozentren zur Verfügung. Diese sind in Kombination mit Korngrößen eine Validierungsmöglichkeit für den in ROMS modellierten Sedimenttransport. Durch den numerischen Ansatz ist es möglich, Prozesse hervorzuheben oder zu vernachlässigen. Hierdurch können Sensitivitätsstudien bezüglich des Einflusses sich verändernden Klimas und tektonischer Zustände auf die tiefe Ozeanzirkulation und den Sedimenttransport durchgeführt werden. Müller-Michaelis und Uenzelmann-Neben (2014) führten Variabilität im Sedimenttransport in der Eirik Drift auf Veränderungen in der Stärke und des Strömungspfades des WBUC zurück, welche durch unterschiedliche Gebiete der Tiefenwasserbildung hervorgerufen wurden. Diese Hypothese kann mit dem regionalen Model getestet werden und die klimatologischen Ursachen für die Veränderung der Gebiete der Tiefenwasserbildung können identifiziert werden. Der Strömungspfad des WBUC ist zusätzlich durch tektonische Veränderungen beeinflusst, z.B. die Subsidenz des Grönland-Schottland-Rückens oder der Schließung des Zentralamerikanischen Durchflusses. Der Einfluss tektonischer Veränderungen auf die Stärke und Strömungspfade des WBUC als auch auf Sedimentationsraten und Korngrößen wird in diesem Projekt betrachtet. Wir werden daher eine Verbindung zwischen Sedimentationsraten und Korngrößen, wie sie in den Bohrkernen von Sites 646 und U1305-1307 gemessen wurden, und klimatologisch und tektonisch hervorgerufener Änderungen der Geschwindigkeiten und Strömungspfade des WBUC herstellen.
Dieses Projekt konzentriert sich auf die lateral umfassende (21ºS bis 25°S) Aufzeichnung des fluvialen Transports und der Ablagerung entlang der Küste, die als Schwemmkegel in der schmalen Küstenebene erhalten sind. Ziel ist es, den langfristigen küstenparallelen Klimagradienten und zeitliche Schwankungen der Transportvorgänge aus den Quellgebieten in der Küstenkordillere und Ablagerungsraten abzuleiten. Der Zeitbereich dieses Projekts ist das Quartär, eingeschränkt vom maximalen Alter der schmalen Küstenebene. Schwerpunkte sind die Sedimentologie und Chronologie der Küstenschwemmkegel. Chronologische Informationen werden durch Lumineszenzdatierung von feinkörnigen Sedimenten und Bedeckungsaltersdatierungen von Grobsedimenten, mittels kosmogenen Nukliden, gewonnen.
Das Projekt VARSTIDE untersucht die räumliche Variabilität der Wechselwirkungen von Sediment- und Hydrodynamik im Emsästuar. Durch die Analyse von Messdaten aus vergangenen Messkampagnen liefert das Projekt einen wesentlichen Beitrag zum Verständnis von Ursachen und Auswirkungen der Verschlickung und Bildung von Flüssigschlickschichten in Ästuaren. Aufgabenstellung und Ziel Die Entwicklung des Emsästuars ist durch eine starke Zunahme von Tidehüben und Schwebstoffkonzentrationen bis hin zur Ausbildung einer mächtigen Flüssigschlickschicht geprägt. Diese Veränderungen wurden insbesondere durch vergangene Eingriffe zur Änderung der Geometrie (Vertiefungen und Begradigungen) ausgelöst (Winterwerp und Wang 2013, van Maren et al. 2015). Untersuchungen zur Hydro- und Sedimentdynamik des Emsästuars in den vergangenen FuE-Projekten MudEstuary (B3955.03.04.70235) und MudEms (B3955.03.04.70241) haben deutlich gezeigt, dass die Prozesse, die zu einem Anstieg der Sedimentkonzentrationen und zur Verschlickung (und Ausbildung von Flüssigschlick) führten, von hoher Komplexität geprägt sind. Zudem variieren sie auf verschiedenen zeitlichen und räumlichen Skalen. In den Messkampagnen EDoM (August 2018, Januar 2019) und MudMeas (September 2021) wurde dies unter anderem individuell betrachtet. Um die verschiedenen Prozesse im Emsästuar auch in Modellen weiterhin abbilden zu können, ist es notwendig, diese umfangreichen Datensätze systematisch hinsichtlich der räumlichen Variabilität der Tidecharakteristika und Schwebstoffdynamik zu untersuchen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Konzentrationen und Ausdehnung (vertikal und horizontal) der Schwebstoffe beeinflussen maßgeblich die lokale Hydrodynamik, somit auch die Ausbreitung von salzreichem Wasser und daraus resultierende Strömungsgeschwindigkeiten. Das Verständnis der vorherrschenden Prozesse beeinflusst demnach auch die Schifffahrt. Ein verbessertes Systemverständnis der Sedimentdynamik ermöglicht zusätzlich die Optimierung des Sedimentmanagements. Um auch in Zukunft zuverlässige Aussagen zur Hydrodynamik in (hyper-) turbiden Ästuaren treffen zu können, ist es notwendig, die verwendeten Methoden stets fachlich zu erweitern und abzusichern. Diese Erkenntnisse fließen unmittelbar in die behördliche Gutachtertätigkeit der BAW im Emsästuar ein. Untersuchungsmethoden Die Auswertungen in VarSTiDE erfolgen für Datensätze verschiedener Messtypen. Die Analysen der Dauermessungen, bereitgestellt durch WSA Ems-Nordsee und NLWKN, bilden das Arbeitspaket 1 (AP1). AP1 beinhaltet die Untersuchung von Saisonalität und langfristiger Entwicklung von Tidekennwerten, Tideasymmetrie, Salzgehalt und Schwebstoffkonzentrationen. Diese Ergebnisse liefern Kenntnisse über die zu erwartenden Unterschiede, die aufgrund der verschiedenen Messzeiträume in den Untersuchungsparametern Schwebstoffkonzentration, Salzgehalt und anderen Tidekennwerten entstehen. Der wissenschaftliche Austausch mit weiteren Partnern aus Forschung und Praxis ist ein Bestandteil des Forschungsvorhabens. Es bestehen Kooperationen, u. a. mit der Christian-Albrechts-Universität zu Kiel.
Origin | Count |
---|---|
Bund | 495 |
Land | 59 |
Wissenschaft | 11 |
Type | Count |
---|---|
Daten und Messstellen | 9 |
Förderprogramm | 474 |
Kartendienst | 1 |
Text | 25 |
Umweltprüfung | 5 |
unbekannt | 35 |
License | Count |
---|---|
geschlossen | 45 |
offen | 500 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 464 |
Englisch | 154 |
Resource type | Count |
---|---|
Archiv | 16 |
Bild | 7 |
Datei | 6 |
Dokument | 22 |
Keine | 261 |
Unbekannt | 1 |
Webdienst | 1 |
Webseite | 260 |
Topic | Count |
---|---|
Boden | 525 |
Lebewesen und Lebensräume | 491 |
Luft | 395 |
Mensch und Umwelt | 549 |
Wasser | 521 |
Weitere | 539 |