The Seismicity Catalog Collection is a compilation dataset on over four million earthquakes dating from 2150 BC to 1996 AD from NOAA's National Geophysical Data Center and U.S. Geological Survey's National Earthquake Information Center. The data include information on epicentral time of origin, location, magnitudes, depth and other earthquake-related parameters. This database is static and is no longer being updated. The CD collection was a compilation of all of the earthquake catalogs, both US and non-US, in the National Geophysical Data Center (NGDC) archive available in 1996. The purpose was to provide users with access to all the seismicity data in one place. Data can be accessed through the GeoVu data access and visualization software included on the CDs. This software allows visualization of pre-computed histograms as well as reformatting of data files to a format specified by the user. Many of the more popular data bases are available in several different formats so the user will not have to reformat large data bases. Files can be formatted for use on IBM PCs, Macs, or UNIX machines. Format information, data dictionary and statistical information are also included. A bibliography of earthquake-related materials at NCEI and the Summary of Earthquake Data Base (KGRD-21) are included on the CD-ROM. NOAA and NCEI make no warranty, expressed or implied, regarding these data, nor does the fact of distribution constitute such a warranty. NOAA and NCEI cannot assume liability for any damages caused by any errors or omissions in these data. If appropriate, NCEI can only certify that the data it distributes are an authentic copy of the records that were accepted for inclusion in the NCEI archives. This dataset has been archived in the framework of the PANGAEA US data rescue initiative 2025.
Seismische Stationen in Niedersachsen Seismische Stationen in Niedersachsen werden von verschiedenen Institutionen und zu unterschiedlichen Zwecken betrieben. Dazu gehören Stationen zur dauerhaften und unabhängigen Überwachung durch staatliche Erdbebendienste und Forschungsinstitutionen, Stationen zur Überwachung von Bergbauaktivitäten durch Industrieunternehmen und zeitweilig installierte Stationen zum Beispiel im Rahmen von Forschungsprojekten. Der Niedersächsische Erdbebendienst (NED) im LBEG betreibt seismische Stationen im Rahmen der folgenden Messnetze und Aufgaben. Stationen dieser Messnetze werden auf dem Kartenserver dargestellt: 1) Landesmessnetz Niedersachsen (LBEG): Unabhängige Erdbebenüberwachung in Niedersachsen Das Landesmessnetz Niedersachsen dient der systematischen Registrierung von natürlichen und anthropogen verursachten, induzierten Erdbeben in Niedersachsen. Es befindet sich zurzeit im Aufbau. Vorbereitet sind sechs Stationen, die vor allem in Gebieten Niedersachsens installiert werden, in denen bislang noch keine seismischen Stationen betrieben worden sind. Hochempfindliche Seismometer und Standorte an seismisch ruhigen Standorten sollen die flächendeckende Registrierung von Erdbeben auch deutlich unterhalb der Spürbarkeit des Menschen ermöglichen. 2) Kooperationsnetz Niedersachsen (LBEG, BGR): Unabhängige Erdbebenüberwachung im Gebiet der Erdgasförderregionen In den Erdgasförderregionen im zentralen Niedersachsen betreibt das LBEG ein Messnetz aus hochempfindlichen Seismometern in Kooperation mit der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Es befindet sich zurzeit in der technischen Überarbeitung und Erweiterung. Vorbereitet werden sechs Stationen für das Gebiet zwischen Cloppenburg und Munster bzw. Nienburg (Weser) und Rotenburg (Wümme). Induzierte Erdbeben im Zusammenhang mit Erdgasförderung können durch dieses Messnetz noch besser bewertet werden. Zum Beispiel werden Lokalisierungen mit geringen Unsicherheiten von +/-2 km angestrebt, so dass schwache Erdbeben besser ausgewertet werden können. Weitere seismische Messnetze in Niedersachsen ohne Beteiligung des LBEG werden im Folgenden kurz beschrieben. Für detaillierte Informationen verweisen wir auf die Internetseiten der jeweiligen Betreiber. Stationen dieser Messnetze werden auf dem Kartenserver nicht dargestellt: 3) German Regional Seismic Network (GRSN) (Kooperation seismologischer Institute): Erdbebenüberwachung und Forschungsaufgaben Das Deutsche Seismologische Regionalnetz (German Regional Seismic Network, GRSN) wurde in den Neunzigerjahren aufgebaut mit dem Ziel, deutschlandweit hochwertige und einheitliche seismologische Daten zu erheben. Es wird durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) koordiniert und in Zusammenarbeit mit deutschen Hochschul- und Forschungseinrichtungen sowie Landeserdbebendiensten betrieben. Seit seiner Errichtung wird es kontinuierlich ausgebaut. Neben den Stationsnetzen der Landeserdbebendienste liefert es einen wichtigen Beitrag zur Erdbebenüberwachung in Deutschland, in Europa und weltweit. Darüber hinaus liefert es wichtige Daten für Forschungsprojekte. Einige Stationen des GRSN befinden sich in Niedersachsen. Die Standorte der Messstationen sind zum Beispiel einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen steht Ihnen die BGR als zentrale Ansprechpartnerin zur Verfügung. 4) Stationen der BGR für spezifische Beratungsaufgaben Im Rahmen ihrer spezifischen Beratungs- und Forschungsaufgaben betreibt die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) seismische Stationen, von denen einige in Niedersachsen installiert sind. Die Standorte der Messstationen der BGR sind einsehbar unter https://www.bgr.bund.de. Eine Liste der wichtigsten Metadaten finden Sie in Textform unter https://eida.bgr.de/fdsnws/station/1/query?format=text&level=station&network=GR. Für weitere Informationen kontaktieren Sie bitte die BGR. 5) Messnetze SON und DEN des Bergschadenskundlichen Beweissicherungssystems (BBS), (BVEG) Zur Überwachung seismischer Ereignisse im Umfeld der Erdgasfördergebiete wird durch den Bundesverband Erdgas, Erdöl und Geoenergie e. V. (BVEG) ein seismisches Messnetz, das Bergschadenskundliche Beweissicherungssystem (BBS), betrieben. Die Überwachung dient zum einen der Bewertung der Auswirkungen von Erschütterungen auf Gebäude. Hierzu werden Erschütterungsmessstationen zur Bewertung entsprechend DIN 4150 betrieben (Messnetz DEN). Diese Stationen sind zumeist in öffentlichen Gebäuden in Ortszentren installiert. Zum anderen wird die Überwachung für weitergehende seismologische Auswertungen genutzt. Hierzu werden Bohrloch- und Oberflächenstationen an seismisch ruhigen Orten betrieben (Messnetz SON). Die Daten des BVEG werden dem NED für die Erdbebenüberwachung im Gebiet der Erdgasförderregionen zur Verfügung gestellt. Die Standorte der Messstationen des Bundesverbandes Erdöl, Erdgas und Geoenergie e.V. (BVEG). sind einsehbar unter http://www.bveg-maps.de/. Für weitere Informationen kontaktieren Sie bitte den BVEG. 6) Temporäre Forschungsprojekte (verschiedene Betreiber) In Forschungsprojekten werden seismologische Detailfragen untersucht. Projekte werden von Universitäten und anderen Forschungsinstituten durchgeführt, öffentlich gefördert, in Zusammenarbeit mit oder im Auftrag von Bergbauunternehmen. Stationen im Rahmen von Forschungsprojekten werden für eine begrenzte Zeit betrieben, je nach Fragestellung typischerweise für einige Wochen bis drei Jahre. Eine Übersicht über Forschungsprojekte seit 2013, in deren Rahmen seismische Stationen betrieben wurden, stellt der NED auf Anfrage zur Verfügung. Für Informationen des Beeinflussungsbereichs von Windenergieanlagen auf seismische Stationen verweisen wir auf die Erläuterungen in den Metadaten des Themas „Seismische Stationen – Beeinflussungsbereich Windenergieanlagen“.
Sichere und grundlastfähige erneuerbare Energiequellen sind essentiell für das Erreichen globaler Klimaziele. Die Tiefengeothermie kann Wärme und Strom unabhängig von Wetterbedingungen liefern und spielt eine Schlüsselrolle bei dem Vorantreiben der grünen Energiewende. Mit unserem Vorhaben gehen wie die Hauptfaktoren, die ein schnelleres Wachstum des Geothermiesektors verzögern, an: lange Amortisationszeiten und hohe sozio-ökonomische Risiken im Zusammenhang mit induzierter Seismizität. Hauptrisiken der Tiefengeothermie sind hohe Unsicherheiten über die Existenz, Lage und Orientierung geologischer Strukturen im Untergrund und die daraus resultierende hohe Unsicherheit über das Potential seismische Ereignisse zu induzieren. In diesem Teilvorhaben wollen wir in beiden Aspekten Fortschritte machen, in dem wir dynamische seismologische Modelle des Untergrunds erarbeiten. Aus der Kombination der innovativen seismischer Verfahren der Migration und Interferometrie werden wir dynamische Modelle erarbeiten. Diese Modelle verdeutlichen die seismische Reaktion des Untergrundes auf temporäre Veränderungen von Spannungen. Dazu werden Herdflächenlösungen mit Änderungen von seismischen Geschwindigkeiten korreliert. Ziel ist das Abschätzen von Schwellenwerten für Spannungsänderungen, die lokale Seismizität auslösen können. Die Interpretation dieser lokalen Änderungen in Hinblick auf eine geothermische Nutzung des Untergrunds hilft der Standortauswahl und somit der Reduzierung der seismischen Gefährdung. Wir werden einen neuen Arbeitsablauf entwickeln, um die seismische Gefährdung durch Tiefengeothermie in der Niederrheinischen Bucht abzuschätzen. Dieser Arbeitsablauf wird einen räumlich aufgelösten Erdbebengefährdungsindex beinhalten, der auf intuitive Weise die seismische Gefährdung der Region kommuniziert.
Im Verbundprojekt 'Restless' soll die Frage geklärt werden, ob und in wieweit das Risiko induzierter Seismizität von der Lithologie des erschlossenen geothermischen Reservoirs abhängt. Gesamtziel des Projekts ist es, mit einer Kombination von Gelände-, Labor- und numerischen Methoden die notwendigen Bedingungen zur Reaktivierung von Störungen und die resultierende Seismizität in Abhängigkeit von deren geometrischen und lithologischen Eigenschaften genauer zu untersuchen. Ziel dieses Teilprojekts ist es zu untersuchen, bei welchen definierten Druckveränderungen in einem geothermischen Reservoir es bei gegebenen regionalen Spannungsverhältnissen zu induzierter Seismizität kommen kann. Dies soll durch die Weiterentwicklung hauseigener Simulationscodes erfolgen. Die geplanten transienten THM-Simulationen sowohl die räumliche und zeitliche Verteilung der seismischen Ereignisse als auch deren Quellsignalcharakteristik liefern. Diese Informationen werden dann genutzt, um die vom Quellort (Hypozentrum) ausgehenden seismischen Wellen im dreidimensionalen Raum zu simulieren und die daraus resultierenden Bodenschwinggeschwindigkeiten abzuschätzen. Notwendige Eingangsdaten und Randbedingungen der Simulationen, z.B. zu Modellgeometrien und gesteinsphysikalischen Parametern, werden durch die Verbundpartner zur Verfügung gestellt und durch eigene H/V-Messungen im Gelände ergänzt. Die Simulation erfolgen zunächst an generischen Modellen zur Erlangung eines besseren Prozessverständnisses sowie zur Untersuchung des möglichen Effekts unterschiedlicher Lithologien auf die induzierte Seismizität. Anschließend werden Simulationen für zwei Beispielstandorte durchgeführt. Die Arbeiten werden ergänzt durch eine Literaturstudie, welche neben der Recherche zu gesteinsphysikalischen Eigenschaften insbesondere eine Aufarbeitung existierender Geothermiestandorte hinsichtlich ihrer durchteuften Lithologien und induzierter Seismizität beinhaltet.
Im Verbundprojekt 'Restless' soll die Frage geklärt werden, ob und in wieweit das Risiko induzierter Seismizität von der Lithologie des erschlossenen geothermischen Reservoirs abhängt. Gesamtziel des Projekts ist es, mit einer Kombination von Gelände-, Labor- und numerischen Methoden die notwendigen Bedingungen zur Reaktivierung von Störungen und die resultierende Seismizität in Abhängigkeit von deren geometrischen und lithologischen Eigenschaften genauer zu untersuchen. Das Teilvorhaben untersucht die hydraulischen Eigenschaften des Kluftnetzwerkes im Nahbereich von Störungszonen im Granit. Im GranitLab des GZN können die hydraulischen, petrophysikalischen und geomechanischen Eigenschaften von spröden Störungszonen in Graniten untersucht werden. Das Granitlab verfügt über 15 hydraulisch und bohrlochgeophysikalisch untersuchte Bohrungen mit einer Tiefe von ca. 25 m. Diese sollen im Zuge von RESTLESS durch drei Schrägbohrungen mit einer Tiefe von 100 m erweitert werden. Die Kernbohrungen werden bohrlochgeophysikalisch vermessen. Produktions- und Injektionsversuche dienen der Bestimmung der Permeabilität des Kluftnetzwerkes, des Rissöffnungsdruckes und der Richtung der minimalen Hauptspannung. Geometrie und Vernetzung des Kluftnetzwerkes werden mit Bohrlochradar und Bohrlochtomographie bestimmt. Hierzu sind wiederholte Messungen vorgesehen, u.a. auch vor und nach der Injektion eines Salzwassertracers, der dazu dient, die Fließwege und -geschwindigkeiten im Kluftnetz nachvollziehen zu können. Die analytischen Auswertungen der Messdaten sollen zu einem besseren Verständnis Fließbedingungen, der Druckausbreitung und den hydraulisch relevanten Reservoirbedingungen führen. Daneben werden im Labor Gesteinsproben aus Analogaufschlüssen petrophysikalisch untersucht, um mit den Messergebnissen die Modellierungen zu parametrisieren. Darüber hinaus werden mit XRD-Analyse der Tonmineralgehalt und die Art der Tonminerale ermittelt.
Die tiefe Geothermie in Deutschland hat das Potential ein entscheidender Faktor zur Erreichung der Klimaschutzziele zu sein - insbesondere bei der Wärmewende. Hierzu müssen jedoch die Risiken bezüglich der notwendigen Tiefbohrungen, Fündigkeit und Produktion weiter reduziert werden. Dabei ist die mechanische Integrität des Untergrundes entscheidend, beeinflusst sie doch maßgeblich die Reservoirqualität, die Bohrlochstabilität und das Auftreten induzierter Seismizität. Die mechanische Integrität des Untergrundes ergibt sich neben den geomechanischen Gesteinseigenschaften aus der Differenz zwischen minimalen Hauptspannungsmagnitude und dem Porendruck, der minimalen Effektivspannung. Das vorgeschlagene Projekt soll dazu beitragen, die Risiken und Gestehungskosten tiefengeothermischer Projekte in Deutschland zu verringern, indem erstmals Porendruck und somit minimale Effektivspannungen im Rahmen der World Stress Map zur Verfügung gestellt werden. Speziell für die Bohrplanung sind Porendruck und minimale Effektivspannung von zentraler Bedeutung, da sie das optimale Spülungsgewicht, die Rohrabsetzteufen und die Bohrlochstabilität definieren. In einem weiteren Schritt soll daher die neue Datenbank genutzt werden, um ein Bohrrisikomanagement-Toolkit zu entwickeln. Das Toolkit soll es ermöglichen unter Eingabe des Bohrstandorts und Bohrpfads automatisiert eine Vorhersage der minimalen Effektivspannung und Bohrlochstabilität zur Verfügung zu stellen. Das Toolkit wird von einem Industriepartner hinsichtlich seiner Eignung sowie der Sensitivitäten an realen Daten validiert und bzgl. seiner Handhabbarkeit optimiert. Die Verfügbarkeit einer Datenbank zu Porendruck und Effektivspannungen sowie die Bereitstellung eines Toolkits, dass eine qualitativ hochwertige und standardisierte Vorhersage dieser Parameter erlaubt, wäre weltweit einzigartig und verschafft der Tiefen Geothermie in Deutschland sowohl sozioökonomische als auch sicherheitsrelevante Vorteile.
Problemstellung: Fuer den westlichen Teil des hellenischen Bogens ist von amerikanischen Seismologen der University of Colorado, Boulder, ein starkes Beben der Magnitude 7,5 fuer die Dekade 1980-1990 vorausgesagt. Es wird erwartet, dass sich das Ereignis durch Vorlaeufer etwa der Magnitude 4 kurzfristig ankuendigt. Im Gegensatz zum griechischen Seismometernetz koennen mit dem Graefenberg-Array seismische Ereignisse oberhalb der Detektionsschwelle in Real Time erkannt werden. Ziel: Kontinuierliche Ueberwachung eines als potentiell stark erdbebengefaehrdet eingestuften Gebietes zum Zwecke der deterministischen Erdbebenvorhersage. Das Projekt hat Forschungscharakter. Innerhalb des Projektes soll untersucht werden, inwieweit die Seismizitaet Griechenlands mit dem Graefenberg-Array ueberwacht werden kann, insbesondere ob die zu erwartenden Vorlaeufer von Graefenberg aus zu erkennen sind. Arbeitsprogramm: Aufbau und Austesten eines On-line Ereignisdetektors am Graefenberg-Array, Erarbeiten von Alarmkriterien auf der Basis von Seismizitaetsaenderungen, laufende Ueberwachung der Seismizitaet ueber mehrere Jahre.
Die tiefe Geothermie in Deutschland hat das Potential ein entscheidender Faktor zur Erreichung der Klimaschutzziele zu sein - insbesondere bei der Wärmewende. Hierzu müssen jedoch die Risiken bezüglich der notwendigen Tiefbohrungen, Fündigkeit und Produktion weiter reduziert werden. Dabei ist die mechanische Integrität des Untergrundes entscheidend, beeinflusst sie doch maßgeblich die Reservoirqualität, die Bohrlochstabilität und das Auftreten induzierter Seismizität. Die mechanische Integrität des Untergrundes ergibt sich neben den geomechanischen Gesteinseigenschaften aus der Differenz zwischen minimalen Hauptspannungsmagnitude und dem Porendruck, der minimalen Effektivspannung. Das vorgeschlagene Projekt soll dazu beitragen, die Risiken und Gestehungskosten tiefengeothermischer Projekte in Deutschland zu verringern, indem erstmals Porendruck und somit minimale Effektivspannungen im Rahmen der World Stress Map zur Verfügung gestellt werden. Speziell für die Bohrplanung sind Porendruck und minimale Effektivspannung von zentraler Bedeutung, da sie das optimale Spülungsgewicht, die Rohrabsetzteufen und die Bohrlochstabilität definieren. In einem weiteren Schritt soll daher die neue Datenbank genutzt werden, um ein Bohrrisikomanagement-Toolkit zu entwickeln. Das Toolkit soll es ermöglichen unter Eingabe des Bohrstandorts und Bohrpfads automatisiert eine Vorhersage der minimalen Effektivspannung und Bohrlochstabilität zur Verfügung zu stellen. Das Toolkit wird von einem Industriepartner hinsichtlich seiner Eignung sowie der Sensitivitäten an realen Daten validiert und bzgl. seiner Handhabbarkeit optimiert. Die Verfügbarkeit einer Datenbank zu Porendruck und Effektivspannungen sowie die Bereitstellung eines Toolkits, das eine qualitativ hochwertige und standardisierte Vorhersage dieser Parameter erlaubt, wäre weltweit einzigartig und verschafft der Tiefen Geothermie in Deutschland sowohl sozioökonomische als auch sicherheitsrelevante Vorteile.
Die tiefe Geothermie in Deutschland hat das Potential ein entscheidender Faktor zur Erreichung der Klimaschutzziele zu sein - insbesondere bei der Wärmewende. Hierzu müssen jedoch die Risiken bezüglich der notwendigen Tiefbohrungen, Fündigkeit und Produktion weiter reduziert werden. Dabei ist die mechanische Integrität des Untergrundes entscheidend, beeinflusst sie doch maßgeblich die Reservoirqualität, die Bohrlochstabilität und das Auftreten induzierter Seismizität. Die mechanische Integrität des Untergrundes ergibt sich neben den geomechanischen Gesteinseigenschaften aus der Differenz zwischen minimalen Hauptspannungsmagnitude und dem Porendruck, der minimalen Effektivspannung. Das vorgeschlagene Projekt soll dazu beitragen, die Risiken und Gestehungskosten tiefengeothermischer Projekte in Deutschland zu verringern, indem erstmals Porendruck und somit minimale Effektivspannungen im Rahmen der World Stress Map zur Verfügung gestellt werden. Speziell für die Bohrplanung sind Porendruck und minimale Effektivspannung von zentraler Bedeutung, da sie das optimale Spülungsgewicht, die Rohrabsetzteufen und die Bohrlochstabilität definieren. In einem weiteren Schritt soll daher die neue Datenbank genutzt werden, um ein Bohrrisikomanagement-Toolkit zu entwickeln. Das Toolkit soll es ermöglichen unter Eingabe des Bohrstandorts und Bohrpfads automatisiert eine Vorhersage der minimalen Effektivspannung und Bohrlochstabilität zur Verfügung zu stellen. Das Toolkit wird von einem Industriepartner hinsichtlich seiner Eignung sowie der Sensitivitäten an realen Daten validiert und bzgl. seiner Handhabbarkeit optimiert. Die Verfügbarkeit einer Datenbank zu Porendruck und Effektivspannungen sowie die Bereitstellung eines Toolkits, das eine qualitativ hochwertige und standardisierte Vorhersage dieser Parameter erlaubt, wäre weltweit einzigartig und verschafft der Tiefen Geothermie in Deutschland sowohl sozioökonomische als auch sicherheitsrelevante Vorteile.
Origin | Count |
---|---|
Bund | 311 |
Land | 33 |
Wissenschaft | 7 |
Type | Count |
---|---|
Daten und Messstellen | 3 |
Förderprogramm | 185 |
Text | 113 |
unbekannt | 37 |
License | Count |
---|---|
geschlossen | 127 |
offen | 207 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 316 |
Englisch | 58 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 5 |
Datei | 2 |
Dokument | 20 |
Keine | 213 |
Webdienst | 15 |
Webseite | 103 |
Topic | Count |
---|---|
Boden | 338 |
Lebewesen und Lebensräume | 173 |
Luft | 102 |
Mensch und Umwelt | 338 |
Wasser | 124 |
Weitere | 301 |