Das Projekt "Molekulare Charakterisierung des Ren3 Locus der Resistenz gegen Erysiphe necator (den Echten Mehltau) aus der Rebsorte 'Regent'" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen (JKI), Institut für Rebenzüchtung Geilweilerhof.Dieses Projekt hat zum Ziel, die Mechanismen der Resistenz gegen den Echten Mehltau (E. necator) aufzuklären, die am Haupt-QTL Locus Ren3 auf Chromosom 15 von Regent kodiert sind.Zur Sequenzanalyse des Locus müssen vorhandene genomische Teilsequenzen aus der Region weiter assembliert werden. Die resultierenden Contigs sind durch PCR Verfahren zu überprüfen. Das Schließen noch bestehender Lücken durch long range PCR ist anzustreben. Bioinformatorische Analysen (Ermittlung kodierender Bereiche, Datenbankabgleiche) werden in den Sequenzen positionelle Kandidatengene für die Resistenz identifizieren. Diese Kandidatengene werden auf ihre funktionelle Bedeutung hin untersucht. Dazu dienen Genexpressionsanalysen an resistenten und anfälligen Reben im Zusammenhang mit mikroskopischen Beobachtungen der Wirt/Pathogeninteraktion in frühen Stadien der pflanzlichen Abwehr.Vergleichende Diversitätsstudien der Kandidatengene an einem umfangreichen Probensatz resistenter und anfälliger Reben werden Sequenzvarianten und Einzelnukleotidaustausche (single nucleotide polymorphisms, SNPs) aufzeigen. Diese werden durch QTL Analyse und Assoziationsgenetik auf ihre Korrelation mit der Resistenzausprägung hin untersucht, womit zusätzliche Hinweise auf ihre funktionelle Bedeutung erhalten werden. Letztendlich ist ein Modell der erfolgreichen Abwehr bei Regent zu entwickeln. Wichtige Kandidatengene aus diesen Arbeiten sind durch Transformation in anfällige Rebsorten einzuführen und schließlich durch Test der transgenen Reben in ihrer Funktion zu validieren.Mit diesem Projekt und der Erarbeitung der Resistenzmechanismen wird eine Grundlage zur verbesserten züchterischen Nutzung der Resistenzloci in der Kombinationszüchtung für pyramidisierte, nachhaltige Resistenz geschaffen. Eng Merkmals-korrelierende (SNP) Marker werden erarbeitet, die in der Marker-gestützten Züchtung im Hochdurchsatz angewandt werden können.
Das Projekt "Phylogenie afrikanischer, pilzzüchtender Termiten" wird/wurde gefördert durch: United Nations Environment Programme New York / Universität Bayreuth. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fakultät für Biologie, Chemie und Geowissenschaften, Fachgruppe Biologie, Lehrstuhl für Tierphysiologie.Termiten der Unterfamilie Macrotermitinae besitzen in den Savannen Afrikas und Asien eine große ökologische und ökonomische Bedeutung. Diese Termitengruppe züchtet Pilze, durch die sie ein breiteres Nahrungsspektrum nutzen kann. Aufgrund der geringen morphologischen Differenzierung sind die taxonomischen Verhältnisse dieser Termitengruppe ungesichert und deren Phylogenie unklar. Anhand von Sequenzen des mitochondrialen Gens Cytochromoxidase II erfolgt für die Macrotermitinae eine phylogenetische Analyse und, gestützt durch eine Erfassung historischer, tektonischer sowie klimatischer Ereignisse, eine Datierung allopatrischer Speziation.
Das Projekt "Identifizierung der Brassica Chromosomen durch physikalische Lokalisierung von DNA Sequenzen mittels Fluoreszenz in situ Hybridisierung (FISH)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Göttingen, Institut für Pflanzenbau und Pflanzenzüchtung.Die Fluoreszenz in situ Hybridisierung (FISH) als Kombination molekulargenetischer und cytologischer Methoden erlaubt erstmals eine sichere Unterscheidung von Brassica Genomen. In B.caninata (BBCC) und B.juncea (AABB) konnte das B-Genom mittels Genomischer Fluoreszenz in situ Hybridisierung (GISH) markiert werden. Dies erlaubt die Verfolgung von Fremdchromatin des B-Genoms in Artkreuzungen und ihren Rückkreuzungen. Translokationen, Additions- und Substitutions-Chromosomen sollen in schon selektierten Artkreuzungen und ihren Rückkreuzungs-Nachkommen nachgewiesen werden. In der Meiose soll das Paarungsverhalten der Genome untersucht werden, weil mit GISH jetzt zwischen Homologen- und Homöologenpaarung unterschieden werden kann. Homöologenpaarungen ermöglichen intergenomische Rekombinationen, die bei Artkreuzungen zu einem stabilen Einbau neuer Methoden führen können. Die beiden Genome von B.napus (AACC) lassen sich nicht mit GISH unterscheiden, weil sie sich zu ähnlich sind. Es sollen genomspezifische Sequenzen selektiert werden, die lang genug sind, um Fluoreszenz-Signale zu erkennen. Mit diesen Sonden lassen sich nicht nur die beiden Genome unterscheiden, sondern je nach Sonde auch einzelne Chromosomen identifizieren
Das Projekt "Pflanzenbiotechnologie - Genomics-basierte Züchtung von Sonnenblumen für gesteigerten Ertrag, höhere Ertragsstabilität und verbesserte Züchtungseffizienz (SUNRISE), Teilprojekt C: Pflanzenbiotechnologie der Zukunft" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Pflanzenzüchtung.Vorhabensziel: SUNRISE zielt darauf ab, das Spektrum an ölproduzierenden Kulturpflanzen für europäische Märkte zu erweitern. Innerhalb des Projektes sollen Grundlagen für die genombasierte Züchtung als Voraussetzung für die langfristige Wettbewerbsfähigkeit von Sonnenblume gelegt werden. Zur Identifizierung von Resistenzgenen gegen den Falschen Mehltau (Plasmopara halstedii) werden innovative Züchtungsstrategien wie Hochdurchsatz-Sequenzierung und -Genotypisierung zur Anwendung kommen. Diese dienen der Charakterisierung und Klonierung des PlARG-Resistenzlocus auf Kopplungsgruppe 1. Eine detaillierte Haplotypenanalyse des Genortes wird die Marker-basierte Introgression dieser Resistenz in Elitematerial beschleunigen. Arbeitsplanung: Mithilfe einer F2-Kartierungspopulation soll der PlARG-Resistenzlocus auf Kopplungsgruppe 1 feinkartiert werden. Anhand von SSR-Markeranalysen werden rekombinante Linien identifiziert. Die Genotypisierung soll durch SNP- Detektion/Verifizierung erfolgen. Nach Phänotypisierung der F3-Generation und Kartierung werden Marker für MAS ausgewählt. Basierend auf vergleichender Sequenzanalyse zwischen einem anfälligen und einem resistenten bulk sowie dem resistenten Elter wird anhand ermittelter SNPs eine Vorhersage über Kandidatengene auf Kopplungsgruppe 1 getroffen. Für die Genomanalyse werden NGS-basierte Sequenzierungen durchgeführt.
Das Projekt "SFB F37 - Fusarium, SFB F37 - Fusarium" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Department für Angewandte Genetik und Zellbiologie.Viele pflanzenpathogene Pilze können auf befallenen Wirtspflanzen toxische Sekundärmetaboliten bilden. Im Mittelpunkt bisheriger Forschungen standen jene Substanzen, die in Getreide und daraus hergestellten Lebens- und Futtermitteln in für Mensch und Tier gesundheitsgefährdenden Mengen vorkommen. Pilze der Gattung Fusarium sind in Europa die wichtigsten Mykotoxin-Produzenten. Sie verursachen Ährenbleiche bei Weizen und anderen Getreidearten und Kolbenfäule bei Mais. In den genetischen Ressourcen und im Zuchtmaterial sind nur polygen vererbte, quantitative Unterschiede vorhanden. Die molekulare Basis von Chromosomenabschnitten, die zu erhöhter Fusarium-Resistenz beitragen, ist weitgehend unbekannt. Das Ziel unseres Projektes ist es durch ein verbessertes Verständnis der Rolle von Pilzmetaboliten in der Ausbildung von Pflanzenkrankheiten zu einem verbesserten Verständnis von Resistenz-Komponenten in der Pflanze zu kommen. Mit Hilfe moderner Methoden der Genom- und Metabolom-Forschung soll Pflanzenzüchtung von einer rein empirischen zu einer auf dem Verständnis molekularer Vorgänge basierenden Wissenschaft werden. Dies sollte es erleichtern, Fusarium-resistente Getreidesorten mit niedrigem Mykotoxingehalt zu züchten. Das Projekt basiert auf der Arbeitshypothese, dass necrotrophe Pilze wie Fusarium eine Vielzahl von Metaboliten bilden können, die die Pathogenabwehr unterdrücken, womit der ungewöhnlich große Wirtsbereich erklärbar wäre. Die bioinformatische Analyse der vollständigen Genomsequenz von Fusarium graminearum ergab, dass dieser Organismus über eine Vielzahl an Genen für Enzyme zur Bildung von Sekundärmetaboliten verfügt (15 Polyketid-Synthasen, 20 nicht-ribosomale Peptid-Synthasen und 17 Terpenoid-Synthasen). Für die meisten dieser Gene ist kein zugehöriger Metabolit bekannt. Ein wesentliches Ziel des vorliegenden Projektes ist es durch funktionelle Genomik (mittels Gendisruption) und mittels hochentwickelter Metabolom-Analysemethoden solche neuen Suppressor-Metaboliten zu identifizieren. Wenn diese Substanzen verfügbar sind, soll ihr Wirkungsmechanismus in Modellpflanzen untersucht werden. Weites soll die Transkriptom-Veränderung nach Pathogen-Infektion bzw. Elicitor-Behandlung und Toxinbehandlung untersucht werden. Wir beabsichtigen Zuchtmaterial daraufhin zu untersuchen, ob die Fähigkeit bekannte und neue Fusarium-Metaboliten zu inaktivieren in unterschiedlichem Ausmaß ausgeprägt ist. Die Validierung von Kandidatengenen soll durch Analyse von Defektmutanten (aus dem Screening einer TILLING-Population) und durch Überexpression der Kandidatengene in transgenem Weizen erfolgen. Der interdisziplinäre Ansatz, der Forscher aus Gebieten wie Bioinformatik, funktionelle Pilzgenomik, Genomanalyse von Modell- und Nutzpflanzen bis zur Pflanzenzüchtung an einem Strang ziehen lässt, ist ein Alleinstellungsmerkmal dieses Projektes.
Das Projekt "SFB F37 - Fusarium, SFB F37-Fusarium" wird/wurde gefördert durch: Amt der Tiroler Landesregierung, Abteilung Bildung, Geschäftsstelle des Tiroler Wissenschaftsfonds. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Interuniversitäres Department für Agrarbiotechnologie.Viele pflanzenpathogene Pilze können auf befallenen Wirtspflanzen toxische Sekundärmetaboliten bilden. Im Mittelpunkt bisheriger Forschungen standen jene Substanzen, die in Getreide und daraus hergestellten Lebens- und Futtermitteln in für Mensch und Tier gesundheitsgefährdenden Mengen vorkommen. Pilze der Gattung Fusarium sind in Europa die wichtigsten Mykotoxin-Produzenten. Sie verursachen Ährenbleiche bei Weizen und anderen Getreidearten und Kolbenfäule bei Mais. In den genetischen Ressourcen und im Zuchtmaterial sind nur polygen vererbte, quantitative Unterschiede vorhanden. Die molekulare Basis von Chromosomenabschnitten, die zu erhöhter Fusarium-Resistenz beitragen, ist weitgehend unbekannt. Das Ziel unseres Projektes ist es durch ein verbessertes Verständnis der Rolle von Pilzmetaboliten in der Ausbildung von Pflanzenkrankheiten zu einem verbesserten Verständnis von Resistenz-Komponenten in der Pflanze zu kommen. Mit Hilfe moderner Methoden der Genom- und Metabolom-Forschung soll Pflanzenzüchtung von einer rein empirischen zu einer auf dem Verständnis molekularer Vorgänge basierenden Wissenschaft werden. Dies sollte es erleichtern, Fusarium-resistente Getreidesorten mit niedrigem Mykotoxingehalt zu züchten. Das Projekt basiert auf der Arbeitshypothese, dass necrotrophe Pilze wie Fusarium eine Vielzahl von Metaboliten bilden können, die die Pathogenabwehr unterdrücken, womit der ungewöhnlich große Wirtsbereich erklärbar wäre. Die bioinformatische Analyse der vollständigen Genomsequenz von Fusarium graminearum ergab, dass dieser Organismus über eine Vielzahl an Genen für Enzyme zur Bildung von Sekundärmetaboliten verfügt (15 Polyketid-Synthasen, 20 nicht-ribosomale Peptid-Synthasen und 17 Terpenoid-Synthasen). Für die meisten dieser Gene ist kein zugehöriger Metabolit bekannt. Ein wesentliches Ziel des vorliegenden Projektes ist es durch funktionelle Genomik (mittels Gendisruption) und mittels hochentwickelter Metabolom-Analysemethoden solche neuen Suppressor-Metaboliten zu identifizieren. Wenn diese Substanzen verfügbar sind, soll ihr Wirkungsmechanismus in Modellpflanzen untersucht werden. Weites soll die Transkriptom-Veränderung nach Pathogen-Infektion bzw. Elicitor-Behandlung und Toxinbehandlung untersucht werden. Wir beabsichtigen Zuchtmaterial daraufhin zu untersuchen, ob die Fähigkeit bekannte und neue Fusarium-Metaboliten zu inaktivieren in unterschiedlichem Ausmaß ausgeprägt ist. Die Validierung von Kandidatengenen soll durch Analyse von Defektmutanten (aus dem Screening einer TILLING-Population) und durch Überexpression der Kandidatengene in transgenem Weizen erfolgen. Der interdisziplinäre Ansatz, der Forscher aus Gebieten wie Bioinformatik, funktionelle Pilzgenomik, Genomanalyse von Modell- und Nutzpflanzen bis zur Pflanzenzüchtung an einem Strang ziehen lässt, ist ein Alleinstellungsmerkmal dieses Projektes.
Das Projekt "GT: Neue Expressionsysteme für industriell relevante Gene, Teilprojekt 1: Thermus thermophilus, ein neuer Expressionswirt für funktionale Metagenomik" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Technische Universität München, Institut für Botanik und Mikrobiologie, Lehrstuhl für Mikrobiologie.Bei der Verwendung von E.coli als 'Standard'-Wirtsorganismus für die Durchmusterung von metagenomischen Genbanken mit funktionsbasierten Screeningmethoden ist die Detektionsausbeute eingeschränkt auf solche heterologen Umweltgene, die in E.coli auch exprimiert werden. In diesem Projekt soll das extrem thermophile Bakterium Thermus thermophilus als alternativer Wirtsorganismus weiter entwickelt und dessen Potential für das funktionelle Screening von Umweltgenbanken nach Genen für industriell relevante Enzyme erkundet und eingesetzt werden. Weitere Ziele umfassen die Expression interessant erscheinender Gene, die Charakterisierung der davon kodierten Enzyme und die Auslotung der Anwendbarkeit dieser Enzyme für biotechnologische Prozesse. Vorgehensweise: Das neue Thermus Wirt/Vektor-System soll in verschiedenen Punkten verbessert werden (Optimierung der Transformationsmethodik; proteasefreie Stämme; Einsetzbarkeit sowohl bei hohen, als auch bei moderaten Temperaturen; verbesserte Selektionsmarker; Überexpression in Thermus). In einem vergleichenden Screening-Experiment soll ein und dieselbe Metagenom-Genbank in T.thermophilus und parallel (bei anderen Verbundpartnern) auch in anderen Wirtsorganismen nach Esterase-Genen durchforstet werden. Daneben soll das neue T.thermophilus Wirt/Vektor-System für die Suche nach anderen industriell relevanten Enzymen (z.B. Amadoriasen, Monooxygenasen) eingesetzt werden.
Das Projekt "CH4-MikroSens: Entwicklung eines Schnelltest zur Bewertung des mikrobiellen Zustandes von Biogasanlagen - Initiierung eines online-Verfahrens" wird/wurde gefördert durch: PFAU , Bremerhavener Gesellschaft für Investionsförderung und Stadtentwicklung mbH. Es wird/wurde ausgeführt durch: Hochschule Bremerhaven, Technologietransferzentrum.Der Einsatz von Biomasse gehört zu den wichtigsten Quellen für erneuerbare Energien in Deutschland. Neben der Nutzung fester Biomasse wird eine sehr große Menge an Strom und Wärme aus Biogas gewonnen. Um diese Marktposition weiter zu stärken und die Zuverlässigkeit dieser Energiequelle zu erhöhen, ist es zielführend die Kontrollierbarkeit des Anlagenbetriebes von Biogasanlagen auszubauen und so den Biogasprozesses zu stabilisieren und eventuelle wirtschaftliche Verluste zu vermeiden. Moderne Biogasanlagen sind heutzutage bereits in vielerlei Hinsicht optimiert. Eine weitere Verbesserung der etablierten Anlagentechnik und eine verbesserte Prozesseffizienz ist daher nicht zu erwarten bzw. lohnenswert. Das aktuelle Interesse der Biogasbetreiber bestehlt vielmehr darin, die Raumbelastung und damit die Energieausbeute der bestehenden Anlagen zu erhöhen ohne dabei den laufenden Anlagenbetrieb und die damit verbundenen biologischen Fermentationsprozesse zu gefährden. Daher ist es für die Anlagenbetreiber von höchstem Interesse, negative Veränderungen in der mikrobiellen Gemeinschaft so früh wie möglich zu erfassen, um schnellstmöglich reagieren und gegensteuern zu können. In den letzten Jahren wurden vermehrt mikrobielle Untersuchungen in Biogasfermentern mithilfe von molekularbiologischen Methoden durchgeführt. Derartige Untersuchungen sind allerdings zurzeit weit davon entfernt zur Routineanalytik in Biogasanlagen zu gehören, nicht zuletzt, weil diese häufig zeitaufwendig sind und somit jegliche Nutzbarkeit als Frühwarn-Indikator verlieren. Ziel dieses Forschungsprojektes ist daher ein Online-Messverfahren bzw. einen Schnelltest zu entwickeln, der möglichst zeitnah Veränderungen in der mikrobiellen und damit funktionellen Struktur der Anlage anzeigt. Im Rahmen des Projektes sollen zunächst verschiedene Techniken auf ihre Eignung für diesen Zweck getestet werden, um schließlich mit dem am besten geeigneten Verfahren die Sensorentwicklung voranzutreiben. Als Herangehensweise bieten sich einerseits optische (hochauflösende Bilder der Schlammstrukturen, Fluoreszenz) bzw. elektrische Eigenschaften (Zeta-Potential-Messungen) an. Anderseits stellen molekularbiologische Methoden einen sinnvollen Ansatzpunkt dar (phylogenetische Bestimmung mittels der DNA-Sequenzen Art-spezifischer Gene, Gen-Aktivitätsmessung mittels mRNA). Optimalerweise soll der zu entwickelnde Sensor während des laufenden Betriebes von Biogasfermentern eingesetzt werden können. Dies ist für die optischen und das elektrische Verfahren anzustreben. Für die molekularbiologischen Ansätze ist derzeit die Umsetzung als Schnelltest-Verfahren realistisch. Das Ziel dieses Verfahren ist, bestenfalls nicht nur Aussagen über die Abundanz verschiedener Organismengruppen mittels der Art-spezifischen DNA-Sequenzen zu treffen, sondern auch Hinweise auf den Aktivitätszustand der Mikroorganismen mittels einer quantifizierenden Charakterisierung der mRNA zu erlangen.
Das Projekt "Untersuchung der Phylogenie und Evolution mariner Höhlenkrebse der Klasse Remipedia an Hand von morphologischen Datensätzen und Sequenzanalysen mitochondrialer und nuklearer Gene" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie.Die Remipedia zählen zu den bemerkenswertesten zoologischen Neufunden der letzten 30 Jahre. Diese Gruppe blinder und pigmentloser Höhlenkrebse wurde erst 1980 während eines Tauchgangs auf den Bahamas entdeckt. Obwohl inzwischen 16 Arten beschrieben worden sind, sind einige fundamentale biologische Aspekte der Remipedia immer noch gänzlich unbekannt. So weiß man zum Beispiel nicht, wie sich Remipedien fortpflanzen und entwickeln. Auch ist relativ wenig über die Ökologie und das Verhalten dieser Krebse bekannt. Das primäre Ziel dieses Forschungsprojekts ist eine Analyse der Verwandtschaftsbeziehungen innerhalb der Remipedia an Hand genetischer Sequenzen sowie morphologischer Datensätze. Darüber hinaus soll die stammesgeschichtliche Stellung der Gruppe innerhalb der Crustacea näher bestimmt werden. Um die phylogenetischen Beziehungen der Remipedia zu analysieren, wird eine Matrix aus 35-40 morphologischen Merkmalen erstellt. Zusätzlich werden fünf mitochondriale und vier nukleare Gene sequenziert. Dieses Forschungsprojekt beinhaltet erstmalig eine umfangreiche Analyse molekularer und morphologischer Daten für alle Arten einer höheren Gruppe der Crustacea. Die Kombination verschiedener Datensätze und -typen liefert die Grundlage für eine rigorose phylogenetische Analyse der Gruppe. Hierdurch wird zum einen eine stabile taxonomische Revision der Remipedia ermöglicht und, zum anderen, ein weiterer wichtiger Schritt zur Vervollständigung der Tree of Life-Initiative geleistet. Die umfangreiche Selektion genetischer Marker erlaubt außerdem die Evaluierung geeignete Kandidaten-Gene für universelle Standardverfahren bei der Identifizierung von Arten (Bar-Coding).
Das Projekt "Metabolomics der Pflanze - Fusarium Interaktion" wird/wurde gefördert durch: Amt der Tiroler Landesregierung, Abteilung Bildung, Geschäftsstelle des Tiroler Wissenschaftsfonds. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Interuniversitäres Department für Agrarbiotechnologie.Viele pflanzenpathogene Pilze können auf befallenen Wirtspflanzen toxische Sekundärmetaboliten bilden. Im Mittelpunkt bisheriger Forschungen standen jene Substanzen, die in Getreide und daraus hergestellten Lebens- und Futtermitteln in für Mensch und Tier gesundheitsgefährdenden Mengen vorkommen. Pilze der Gattung Fusarium sind in Europa die wichtigsten Mykotoxin-Produzenten. Sie verursachen Ährenbleiche bei Weizen und anderen Getreidearten und Kolbenfäule bei Mais. In den genetischen Ressourcen und im Zuchtmaterial sind nur polygen vererbte, quantitative Unterschiede vorhanden. Die molekulare Basis von Chromosomenabschnitten, die zu erhöhter Fusarium-Resistenz beitragen, ist weitgehend unbekannt. Das Ziel unseres Projektes ist es durch ein verbessertes Verständnis der Rolle von Pilzmetaboliten in der Ausbildung von Pflanzenkrankheiten zu einem verbesserten Verständnis von Resistenz-Komponenten in der Pflanze zu kommen. Mit Hilfe moderner Methoden der Genom- und Metabolom-Forschung soll Pflanzenzüchtung von einer rein empirischen zu einer auf dem Verständnis molekularer Vorgänge basierenden Wissenschaft werden. Dies sollte es erleichtern, Fusarium-resistente Getreidesorten mit niedrigem Mykotoxingehalt zu züchten. Das Projekt basiert auf der Arbeitshypothese, dass necrotrophe Pilze wie Fusarium eine Vielzahl von Metaboliten bilden können, die die Pathogenabwehr unterdrücken, womit der ungewöhnlich große Wirtsbereich erklärbar wäre. Die bioinformatische Analyse der vollständigen Genomsequenz von Fusarium graminearum ergab, dass dieser Organismus über eine Vielzahl an Genen für Enzyme zur Bildung von Sekundärmetaboliten verfügt (15 Polyketid-Synthasen, 20 nicht-ribosomale Peptid-Synthasen und 17 Terpenoid-Synthasen). Für die meisten dieser Gene ist kein zugehöriger Metabolit bekannt. Ein wesentliches Ziel des vorliegenden Projektes ist es durch funktionelle Genomik (mittels Gendisruption) und mittels hochentwickelter Metabolom-Analysemethoden solche neuen Suppressor-Metaboliten zu identifizieren. Wenn diese Substanzen verfügbar sind, soll ihr Wirkungsmechanismus in Modellpflanzen untersucht werden. Weites soll die Transkriptom-Veränderung nach Pathogen-Infektion bzw. Elicitor-Behandlung und Toxinbehandlung untersucht werden. Wir beabsichtigen Zuchtmaterial daraufhin zu untersuchen, ob die Fähigkeit bekannte und neue Fusarium-Metaboliten zu inaktivieren in unterschiedlichem Ausmaß ausgeprägt ist. Die Validierung von Kandidatengenen soll durch Analyse von Defektmutanten (aus dem Screening einer TILLING-Population) und durch Überexpression der Kandidatengene in transgenem Weizen erfolgen. Der interdisziplinäre Ansatz, der Forscher aus Gebieten wie Bioinformatik, funktionelle Pilzgenomik, Genomanalyse von Modell- und Nutzpflanzen bis zur Pflanzenzüchtung an einem Strang ziehen lässt, ist ein Alleinstellungsmerkmal dieses Projektes.
Origin | Count |
---|---|
Bund | 66 |
Type | Count |
---|---|
Förderprogramm | 66 |
License | Count |
---|---|
offen | 66 |
Language | Count |
---|---|
Deutsch | 62 |
Englisch | 16 |
Resource type | Count |
---|---|
Keine | 51 |
Webseite | 15 |
Topic | Count |
---|---|
Boden | 41 |
Lebewesen & Lebensräume | 64 |
Luft | 29 |
Mensch & Umwelt | 65 |
Wasser | 36 |
Weitere | 66 |