Das Projekt "Sub project: Viral infections as controlling factor of the deep biosphere" wird vom Umweltbundesamt gefördert und von Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres durchgeführt. Viruses might be the main 'predators' in the deep biosphere and possibly have a major impact on indigenous microorganisms in providing labile organic compounds for this extremly nutrient depleted habitat. While direct counting of viruses along depth profiles of various ODP sites indicated a general decrease with depth, we could show that the ratio of viruses vs. cells increased. Prophages were induced from six out of thirteen representative deep-biosphere bacteria of our ODP Leg 201 culture collection, exhibiting different morphotypes of sypho- and myoviruses. Five of them were subjected to whole genome sequencing. This sequence information will be used to design specific primers for a molecular detection and quantification of these phages in the deep biosphere. Especially the number and distribution of phages that infect Rhizobium radiobacter, which is highly abundant in subsurface sediments, will be examined. We will further focus on the following questions: How important is the viral shunt in providing essential nutrients for deep biosphere populations? How is the physiological state of indigenous microorganisms related to viral infections?
Das Projekt "DNA - Barcoding der Fauna Bavaric (BFB)" wird vom Umweltbundesamt gefördert und von Zoologische Staatssammlung München durchgeführt. DANN - Barcoding der Fauna Bayerns
Das Projekt "Loess in Armenia" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Geographie, Professur für Physische Geographie durchgeführt. This project aims to characterize, map, analyze and date recently discovered loess-palaeosol sequences from NE Armenia. These sequences have proved to be especially rewarding because of their thickness (up to 45 m) and the presence of diagnostic tephra layers. The project seeks to derive a standard profile for NE Armenia and thus for the Lesser Caucasus. We will use luminescence technologies to date the loess sections, environmental magnetism to understand soil development, mineralogy to constrain provenance and weathering-potential, and terrestrial Mollusca and biomarkers to evaluate different vegetation formations.
Das Projekt "Teilvorhaben 3: Fauna von SW Deutschland und Barcoding von Wirbellosen (3) und Rostpilzen (GBOL 3)" wird vom Umweltbundesamt gefördert und von Staatliches Museum für Naturkunde, Forschungsmuseum Am Löwentor und Schloss Rosenstein, Abteilungen Botanik, Zoologie, Entomologie und Paläontologie durchgeführt. GBOL 3 ist der regionale Knoten für die Fauna Südwestdeutschlands und Bestandteil des Netzwerks zum Barcoding der Organismen Deutschlands mit besonderer Verantwortung für die Taxa Arachnida (exkl. Acari) in Kooperation mit GBOL 1, parasitoide Hymenopteren (in Kooperation mit GBOL 2) und Rostpilze. Faunistisches Material wird von einem Netzwerk von Spezialisten einschließlich lokal arbeitender Forscher, Interessengruppen sowie hauptamtlicher Taxonomen zusammengetragen und verfügbar gemacht. Wichtige Partner sind hierbei der 'Entomologische Verein Stuttgart (EVS)', der 'Arbeitskreis Wildbienen-Kataster' und die 'Südliche Arachnologische Arbeitsgemeinschaft (SARA)'. In den verschiedenen Arbeitspaketen werden unterschiedliche Sammel- und Erfassungsmethoden angewandt, jeweils abgestimmt auf die zu untersuchenden Taxa. GBOL 3 wird in der Regel den Cox1-Marker untersuchen. Nur bei Widersprüchen zwischen genetischen und morphologischen Ergebnissen sollen zusätzliche Gene untersucht werden (z.B. rRNA expansion segments). Ziel von GBOL 3 ist die Sequenzierung von ca. 2.000 Arten, teilweise in Kooperation mit den anderen Teilprojekten. Für WP1-3 wird mit verschiedenen Methoden Frischmaterial gesammelt, unter Mithilfe von Experten und lokalen Spezialisten, für WP4 soll Herbarmaterial verwendet werden. WP1: Probenaufarbeitung und -verteilung; WP2: DNA barcoding von Spinnen u.a. Arachniden aus D.; WP3: DNA barcoding von parasitoiden Chalcidoidea aus D.; WP4: DNA barcoding von Rostpilzen aus D.
Das Projekt "Sub project: Drilling Earth's early surface environments: Moodies Group, Barberton Greenstone Belt, South Africa" wird vom Umweltbundesamt gefördert und von Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften durchgeführt. Continuous coring by scientific drilling in volcanic and sedimentary units of greenstone belts has the potential to obtain new insights in Earth's earliest surface environments due to access to fresh lithologies and textures. Such a proposal has been submitted to ESF funding agencies (Arndt et al.) and has been submitted to IGCP in January, 2008. The current proposal aims to contribute to that objective by identifying potential drill sites and prepare predictive stratigraphic profiles for the Moodies Group of the Barberton Greenstone Belt (ca. 3.22-73.20 Ga), the world's oldest well-preserved quartzose and shallow-water sedimentary sequence. Although the overall degree of metamorphism in the Moodies Group is low, multiple regional alteration events following its deposition, deep burial, Cretaceous exhumation and weathering have affected its deep and near-surface composition and texture. Thus, only samples free from surface effects will help to distinguish between primary, diagenetic and weathering effects. Scientific issues to be clarified by the proposed drilling include the identification of datable ash-fall tuffs, the petrographic and geochemical characterization of weathering-sensitive lithologies and the clarification of the tectonic setting of the Moodies Group by verifying a progressive unconformity near its top. These data will bear on the reconstruction of Archean (and prediction of extraterrestrial) surface conditions and processes such as the intensity of chemical weathering, the role of bacterial mats, and early diagenesis.
Das Projekt "Teilvorhaben 5b: Botanik - Moose, Farne (GBOL 5b)" wird vom Umweltbundesamt gefördert und von Universität Bonn, Nees-Institut für Biodiversität der Pflanzen durchgeführt. GBOL 5 hat zum Ziel 1) eine Referenzsammlung (Herbarbelege & DNA Isolate) der deutschen Flora zu etablieren und 2) für diese Referenzsammlung einen sogenannten DNA-Barcode, bestehend aus einer Kombination zweier Regionen (matK & trnL-F) des Plastidengenoms, für die genetische Artidentifizierung zu generieren. Im Rahmen von GBOL 5b erstellt WP2 die Referenzsammlung der deutschen Moosflora sowie der Farnpflanzen. Schwerpunkte liegen hierbei auf Gruppen die von zentralem Interesse für Biomonitoring, Bioindikation oder forensische Untersuchungen sind. Molekulare Arbeiten werden zentral von GBOL 5 WP3 durchgeführt, optimiert und überwacht. 1. Sichtung der in den Partnerinstituten vorhandenen Herbarbelege auf Verwertbarkeit für DNA-Barcoding (eine vollständige Taxonliste, inkl. Verbreitung liegt bereits vor) (WP2). 2. Aufsammlung fehlender Taxa bzw. Populationen (geographisch repräsentativ für die Verbreitung). Pro Art werden nach Möglichkeit mindestens 7 Populationen aus verschiedenen geographischen Regionen beprobt (WP2). 3. Optimierung der Laborprotokolle für Massensequenzierung pflanzlicher Proben (WP3). 4. Generierung (DNA Isolation, Amplifikation und Sequenzierung) von 44.000 DNA-Barodes (Zwei-Markersystem) für ca. 3.100 Pflanzenarten (aus WP1 und WP2) mit 7-facher Individuendeckung (WP3). 5. Herbarisierung, Dokumentation und Überführung der Belege sowie der DNA-Barcodes in die Datenbank und Referenzsammlung (WP1-3).
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universitätsklinikum Essen (AöR), Institut für Medizinische Strahlenbiologie durchgeführt. Das Gesamtziel des vorliegenden Vorhabens, das in drei Arbeitspaketen (WP) aufgegliedert ist, ist es, den Beitrag der Komplexität eines durch ionisierende Strahlung induzierten DNA Doppelstrangbruches (DSBs) auf die Auswahl des Reparaturweges, die Erzeugung von Verarbeitungsfehlern, wie auch auf die Aktivierung von Checkpoints im Zellzyklus zu untersuchen. Speziell, wird die Hypothese geprüft, dass DSB-Cluster eine höchst gefährliche Form der DNA-Schädigung darstellen, mit einem besonders hohen Risiko für misrepair, die schließlich zum Zelltod oder genomische Instabilität führt. Weitere Stufen der DSB-Komplexität werden durch kombinierte Behandlung mit ionisierender Strahlung und Cisplatin erreicht. Cisplatin ist eines der erfolgreichsten Chemotherapeutika in der Krebstherapie, das oft mit Bestrahlung kombiniert wird. Cisplatinresistenz stellt ein zentrales Problem in der klinischen Anwendung dar und wird von Faktoren beeinflusst, die hier untersucht werden. WP3: Prof. Iliakis 1. Konstrukt Aufbau zur Untersuchung der Auswirkungen der DSB-Cluster-Komplexität in Bezug auf DSB-Zahl und Entfernung, wie auch auf die Wahrscheinlichkeit für misrepair. 2. Chromosomenaberration und Zellüberleben werden untersucht, und Genomveränderungen durch Next Generation Sequencing (NGS) analysiert. WP4: Prof. Iliakis 1. Zelllinien mit regulierbaren I-SceI Expression werden erzeugt um Zellüberleben und Chromosomenaberrationen zu messen. 2. NGS wird eingesetzt um fehlerhafte Verarbeitung von DSB und DSB-Cluster genauer zu analysieren, und Genexpressionsmuster untersucht. WP5: Prof. Stuschke 1. Wechselwirkungen von Cisplatin und IR in der G1-, S- und G2-Phase des Zellzyklus, wie auch der Einsatz von NHEJ und HRR werden untersucht. Letzteres auch durch den Einsatz I-SceI-induzierten DSB in speziell integrierten Konstrukten 2. Die Wirkung von Cisplatin und IR auf DSB-Resektion, Checkpoint Aktivierung und Chromatinstruktur werden nach einzeln und fraktionierter Bestrahlung untersucht.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut IWAR, Fachgebiet Abwasserwirtschaft durchgeführt. Die durch das Virus SARS-CoV-2 verursachte Erkrankung COVID-19 hat sich 2020 wahrscheinlich von China aus ausgebreitet und eine globale Pandemie verursacht. Dies führte im Frühjahr 2020 in vielen Ländern aufgrund der stark gestiegenen Fallzahlen zu erheblichen Belastungen der Gesundheitssysteme. Die Regierungen reagierten vielerorts mit oft strikten Ausgangsbeschränkungen, die teils bis heute anhalten bzw. nach Lockerungen im Sommer 2020 wieder verschärft werden mussten. Die Meldesysteme des Gesundheitssektors kommt bei zu hohen Fallzahlen schnell an ihre Grenzen. Auch asymptomatische Personen die durch die Unwissenheit über die eigene Erkrankung das Virus weiterverbreiten sind problematisch. Den Nachweis, dass Abwasserproben unterstützen können, das Infektionsgeschehen zu verfolgen, weil diese nicht von Testkapazitäten, Teststrategien oder asymptomatischen Verläufen beeinflusst werden, wurde bereits in verschiedenen Studien weltweit gezeigt. Noch wenig erforscht ist das Potential von Abwasserproben als Quelle für genomische Information und damit die Möglichkeit, Verbreitungswege des Virus und von Mutationen wie z.B. SARS-CoV-2 Lineage B.1.1.7, die sich in England vermehr ausgebreitet hat, frühzeitig zu erkennen. Die Ziele dieses Vorhabens liegen daher darin bei der Entwicklung von Messverfahren und Konzepten um über die nächsten Monate und Jahre Mutationen bzw. Varianten und deren Ausbreitung möglichst großflächig über Abwasseranalytik zu erfassen. Dieses Projekt erforscht das Potential von Abwasser als Informationsquelle für die Verfolgung des epidemiologischen Geschehens mittels Genomsequenzierung. Um solche Untersuchungen in Abwasser schnell und zuverlässig durchführen zu können sind entsprechende Studien auch in Deutschland notwendig. Dazu müssen Probennahme, Probenaufbereitung und die Sequenziermethoden weiter auf die Matrix Abwasser angepasst werden um so einen wichtigen Beitrag zur Eindämmung der Pandemie zu liefern.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Emschergenossenschaft durchgeführt. Die durch das Virus SARS-CoV-2 verursachte Erkrankung COVID-19 hat sich 2020 wahrscheinlich von China aus ausgebreitet und eine globale Pandemie verursacht. Dies führte im Frühjahr 2020 in vielen Ländern aufgrund der stark gestiegenen Fallzahlen zu erheblichen Belastungen der Gesundheitssysteme. Die Regierungen reagierten vielerorts mit oft strikten Ausgangsbeschränkungen, die teils bis heute anhalten bzw. nach Lockerungen im Sommer 2020 wieder verschärft werden mussten. Die Meldesysteme des Gesundheitssektors kommen bei zu hohen Fallzahlen schnell an ihre Grenzen. Auch asymptomatische Personen die durch die Unwissenheit über die eigene Erkrankung das Virus weiterverbreiten sind problematisch. Den Nachweis, dass Abwasserproben unterstützen können, das Infektionsgeschehen zu verfolgen, weil diese nicht von Testkapazitäten, Teststrategien oder asymptomatischen Verläufen beeinflusst werden, wurde bereits in verschiedenen Studien weltweit gezeigt. Noch wenig erforscht ist das Potenzial von Abwasserproben als Quelle für genomische Information und damit die Möglichkeit, Verbreitungswege des Virus und von Mutationen wie z.B. SARS-CoV-2 Lineage B.1.1.7, die sich in England vermehrt ausgebreitet hat, frühzeitig zu erkennen. Die Ziele dieses Vorhabens liegen daher darin bei der Entwicklung von Messverfahren und Konzepten, um über die nächsten Monate und Jahre Mutationen bzw. Varianten und deren Ausbreitung möglichst großflächig über Abwasseranalytik zu erfassen. Dieses Projekt erforscht das Potenzial von Abwasser als Informationsquelle für die Verfolgung des epidemiologischen Geschehens mittels Genomsequenzierung. Um solche Untersuchungen in Abwasser schnell und zuverlässig durchführen zu können sind entsprechende Studien auch in Deutschland notwendig. Dazu müssen Probennahme, Probenaufbereitung und die Sequenziermethoden weiter auf die Matrix Abwasser angepasst werden, um so einen wichtigen Beitrag zur Eindämmung der Pandemie zu liefern.
Das Projekt "Long-term changes in baltic algal species and ecosystems" wird vom Umweltbundesamt gefördert und von Universität Kiel, Institut für Meereskunde, Abteilung Meeresbotanik durchgeführt. General Information: The most interesting biogeographical aspects of the Baltic are its salinity gradient, which extends from the Atlantic with oceanic salinity down to near fresh water in the inner parts of the Baltic estuary, and its young age, being only about 7.000 years old as a brackish water basin. These characteristics have led to strong selection pressure among the organisms in the Baltic Sea, and therefore the area is especially tractable for testing evolutionary diversification and adaptation. Ecophysiological comparisons between the Atlantic and Baltic sea algae show that morphological and physiological (measured as photosynthetic performance, growth rate and salinity tolerance) variation is widespread among the species. Also genetic differentiation has been found along the salinity gradient with no apparent hybridization along the contact zones. Our aim is to find out, how common the morphological, physiological and genetic adaptation is in the Baltic Sea algae, whether these are linked together, and what is the history behind the adaptive strategies. This will be done by the study of three integrated levels of the benthic algal populations along the salinity gradient. The central objectives will be to establish a comprehensive reference culture collection from the Baltic Sea across the Skagerrak/Kattegat salinity gradient (task 1), to assess the growth, survival and dispersal performance of salinity ecotypes and phylogeny of bio geographic populations (task 2), and finally to explore the genetic diversity in Baltic Sea populations (task 3). Task 1 The baseline culture collections will be established and maintained in the Scandinavian Culture Collection for Algae and Protozoans, University of Copenhagen, and they will include all important species of red, brown and green algae. Task 2. The salinity ecotypes occurring over a range of salinity will be assessed using classical gradient tables. Task 2 and 3. DNA sequencing will be used for assessing cryptic level species and subspecies diversity. Phylogenetic history and distributional patterns will be studies in selected species of Enteromorpha, Ceramium and Fucus, which provides the link between the palaeoclimatic events and the dominant role they have in their present habitats. Information from task 2 and 3 will be used for correlation analyses between ecotypes and population differentiation. The project will be coordinated from University of Copenhagen (Denmark), and partners are University of Groningen (the Netherlands), University of Kiel (Germany), University of Oslo (Norway) and University of Helsinki (Finland). Prime Contractor: Kobenhavns Universitet, Department of Phycology, Botanical Institute; Kobenhavn; Denmark.
Origin | Count |
---|---|
Bund | 568 |
Type | Count |
---|---|
Förderprogramm | 568 |
License | Count |
---|---|
open | 568 |
Language | Count |
---|---|
Deutsch | 568 |
Englisch | 238 |
Resource type | Count |
---|---|
Keine | 304 |
Webseite | 264 |
Topic | Count |
---|---|
Boden | 409 |
Lebewesen & Lebensräume | 550 |
Luft | 310 |
Mensch & Umwelt | 568 |
Wasser | 332 |
Weitere | 568 |