API src

Found 629 results.

Related terms

Erstellung einer neuartigen netzgekoppelten Photovoltaik-Anlage zur Stromerzeugnung mit beidseitig lichtausnutzenden (bifacialen) PV-Modulen

Das Projekt "Erstellung einer neuartigen netzgekoppelten Photovoltaik-Anlage zur Stromerzeugnung mit beidseitig lichtausnutzenden (bifacialen) PV-Modulen" wird/wurde ausgeführt durch: Stadtwerke Rinteln.Erstellung einer neuartigen und (bisher) weltweit einmaligen netzgekoppelten Photovoltaik (PV) Anlage zur Stromerzeugung mit beidseitig lichtausnutzenden (bifacialen) PV-Modulen und einseitigen Standard-PV-Modulen in gleichartig aufgebauten und aufgestaenderten PV-Anlagen im Netzbetrieb. Ziel ist es, den Nachweis zu erbringen, dass bei optimaler Aufstaenderung bifaciale PV-Module auch in groesseren Anlagen mit mehreren Kilowatt Leistung hoehere Ertraege als einseitig lichtempfindliche Module (bezogen auf die Zellflaeche bis zu 30 Prozent) erzielen koennen. Der erstmalige Einsatz von bifacialen PV-Modulen in groesserem Massstab in einem System soll das am ISFH nachgewiesene hohe Potential der bifacialen Siliziumsolarzellen aufzeigen und nutzbar machen. Mehrertraege von 20 Prozent bis 30 Prozent bei gleicher Zellflaeche (in bezug auf herkoemmliche einseitige Module) sind bei der Aufstaenderung der Module vor einem hellen Hintergrund zu erwarten. Die geplante PV-Anlage mit bifacialen PV-Modulen soll insgesamt ca. 2,5 kWp Leistung aufweisen und auf einem Flachdach des Betriebsgebaeudes der Stadtwerke Rinteln in Rinteln verschattungsfrei installiert werden. Die PV-Module sollen dabei in einem lockeren Abstand vor einem hellen Hintergrund auf die vorhandene Aufstaenderung aufgebracht werden. Eine existierende PV-Anlage mit einseitigen (standard) PV-Modulen mit 5 kWp Anschlussleistung, die bereits 1995 am gleichen Standort in Betrieb genommen wurde, ist als Referenzanlage (gleiche Neigung und Ausrichtung) bestens geeignet. Die Stadtwerke Rinteln beteiligen sich wesentlich an der Finanzierung des Projekts. Das ISFH plant die Anlage und ueberwacht den Betrieb, wobei eine kontinuierliche Messwerterfassung, Leistungsmessung und technische Betreuung der installierten PV-Module und Einzelkomponenten die Basis fuer eine Ertragsoptimierung der PV-Anlagen bilden. Ein kritischer Vergleich der Einzelkomponenten und des Gesamtsystems wird durchgefuehrt und Optimierungspotentiale aufgezeigt. Themenschwerpunkte: 1) Entwurf und Planung eines PV-Moduls mit beidseitig lichtempfindlichen Si-Solarzellen in Absprache mit der Firma ASE GmbH in Alzenau. (angestrebter Wirkungsgrad: Vorderseite ca 13-15 Prozent, Rueckseite ca 11-13 Prozent) 2) Fertigung der Module durch Firma ASE. 3) Leistungszertifizierung an bis zu 10 ausgewaehlten PV-Modulen am ISFH (Vorder- und Rueckseitenwirkungsgrad. 4) Entwurf und Bau einer Haltevorrichtung fuer die vorhandene Aufstaenderungseinheit auf einem Flachdach. 5) Installation der PV-Module bei den Stadtwerken Rinteln: Aufstaenderung Richtung Sueden, Neigung 30 Grad; Abstand vor hellem Hintergrund ca. 20-30 Zentimeter; Abstand der Module untereinander ca. 30 Zentimeter. 6) Optimierung der notwendigen elektrischen Systemtechnik: Rest der elektrischen Komponenten; Einsatz eines Input-Outputkontrollers; Vermessung der elektrischen Kennlinie des installierten PV-Generators mit Hilfe des am ISFH entwickelten Kennlinienanalysators....

Strom aus Photovoltaik - Installierte Leistung pro ha (Reg.-Bez.)

Die Karte zeigt die Summe der installierten elektrischen Leistung der Photovoltaikanlagen pro Hektar (kWₚ / ha) für die Regierungsbezirke in Bayern. Summe der installierten Leistungen der Photovoltaikanlagen pro Hektar je Regierungsbezirk in Bayern.

Der meteorologische Sommer 2024 aus klimatischer Sicht und die Bedeutung für die erneuerbaren Energien Einordnung von Temperatur, Niederschlag, Sonnenscheindauer sowie ein Überblick zur Auslastung erneuerbarer Energien Der Sommer aus klimatischer Sicht Der Sommer 2024 aus Sicht der Erneuerbaren Energien Windkraft Solar

Der Sommer 2024 war in Sachsen-Anhalt zu warm mit überdurchschnittlich vielen Tagen mit mehr als 25 °C und 30 °C und sonnenscheinreicher als im Durchschnitt. Der Niederschlag bewegte sich im Rahmen des langjährigen Mittels. Durch wiederholte Gewitter verteilte sich der Niederschlag räumlich und zeitlich aber sehr ungleichmäßig. Reichlich Sonnenschein sorgte für eine gute Auslastung der solar getriebenen Erneuerbaren Energien.  Die windgetriebenen Kraftwerke waren nicht gut Ausgelastet. Diese konnten nur an wenigen Tagen die solargetrieben in der Auslastung übertreffen. Nach den sehr milden bzw. warmen Vormonaten war die positive Temperaturanomalie im Juni etwas geringer. Dennoch war der Monat mit 17,3 °C um 1,2 K wärmer als im Klimamittel von 1961 bis 1990 üblich. Im Vergleich zum 30-jährigen Zeitraum von 1991 bis 2020 betrug die Abweichung 0,4 K. In der ersten Monatshälfte war es dabei längere Zeit kühl mit Temperaturen überwiegend unterhalb der 20 °C. In der zweiten Monatshälfte wurde es zunehmend sommerlich und zum Monatsende konnten einzelne Tage über 30 °C gemessen werden, am wärmsten war es dabei am 26.06. mit 33,1 °C in Genthin. An der LÜSA-Station in Magdeburg erreichte das Thermometer sogar 36,0 °C. Im Juni 2024 fielen im Flächenmittel Sachsen-Anhalts insgesamt 59,8 mm Niederschlag. Dies entspricht gegenüber dem langjährigen Mittel von 1961 bis 1990 95,2 % und im Vergleich zum 30-jährigen Klimamittel von 1991 bis 2020 wurden 107,7 % erreicht. Dabei regnete in einem Streifen vom südlichen und östlichen Harzvorland bis nach Anhalt deutlich mehr als üblich, wie z.B. in Jeßnitz mit 113,6 mm bzw. 192,5 %, während in der Altmark und dem äußersten Süden Sachsen-Anhalts nicht einmal die Hälfte der üblichen Niederschlagsmenge ankam. So fielen im nördlichen Harzvorland in Hötersleben-Barneberg mit 26,3 mm nur 39,6 % der von 1961 bis 1990 üblichen Niederschlagsmenge, in Zeitz mit 33,3 mm nur 46,5 %. Außerdem gab es gerade am 01. Juni und in der zweiten Monatshälfte teils kräftige Gewitter, die punktuell große Niederschlagsmengen brachten. So fielen am 01. Juni in Weißenfels-Wengelsdorf 49,5 mm Niederschlag. Am 21. Juni brachten die Gewitter zum Beispiel in Zörbig mit 47,0 mm und in Jeßnitz mit 41,7 mm die höchsten täglichen Niederschlagsmengen. Mit 224,3 Sonnenstunden erreichte der Juni 2024 in Sachsen-Anhalt 109,5 % des Klimamittels von 1961 bis 1990 und 100,6 % zum 30-jährigen Mittel von 1991 bis 2020. Weniger Sonnenschein gab es zu Beginn des Monats und um die Monatsmitte, länger zeigte sich die Sonne zwischen 06. und 13. Juni bzw. ab dem 23. Juni bis zum Ende des Monats. Nach einem kühlen und wechselhaften Start in den Juli setzte sich am dem 6. des Monats häufig sommerlich warme Luft durch und es wurden wiederholt heiße Tage (Tage mit einer Tageshöchsttemperatur von 30 °C oder mehr) gemessen. So konnten im Süden Sachsen-Anhalts in Osterfeld und Zeitz bis zu acht solcher Tage registriert werden, während es in der Altmark drei heiße Tage gab. Somit erreichte der Monat eine Mitteltemperatur im Flächenmittel Sachsen-Anhalts von 19,4 °C und war damit um 1,8 K wärmer als die Referenzperiode von 1961 bis 1990, im Vergleich zum 30-jährigen Mittel von 1991 bis 2020 betrug die Abweichung 0,3 K. Mit insgesamt 81,5 mm bzw. 156,2 % Niederschlag war der Juli 2024 feuchter als die Referenzperiode 1961 bis 1990. Vergleicht man mit dem 30-Jahreszeitraum von 1991 bis 2020 wurden 114,2 % des Solls erreicht. Dabei sorgten wiederholt kräftige Gewitter für eine ungleichmäßige Verteilung der Niederschläge. Während in Dessau-Roßlau-Rodleben mit 123,5 mm 254,1 % des Mittels von 1961 bis 1990 erreicht wurden, waren es an der LÜSA-Station in Leuna nur 37,5 mm und in Dederstedt im Seegebiet Mansfelder Land mit 40,5 mm Niederschlag nur 84,4 % im Vergleich zum Referenzzeitraum von 1961 bis 1990. Oft kam ein Großteil des Monatsniederschlags an nur einem Tag herunter. So fielen zum Beispiel am 27. Juli in Loburg 51,8 mm und in Walternienburg-Ronney 49,7 mm Niederschlag. Der Juli brachte in Sachsen-Anhalt 239,7 Sonnenstunden. Damit wurden im Vergleich zur Referenzperiode von 1961 bis 1990 115,8 % und im Vergleich zum Klimamittel von 1991 bis 2020 106,5 % erreicht. Der wärmste Sommermonat war der August, der auch gleichzeitig der 7.-wärmste August seit Beginn der Wetteraufzeichnungen im Jahr 1881 war. Dabei erreichte der Monat eine Mitteltemperatur von 20,6 °C. Der Monat lag damit um 3,5 K über der Referenzperiode von 1961 bis 1990 bzw. um 2,0 K über dem 30-jährigen Mittel von 1991 bis 2020. Am größten waren die Abweichungen in südlichen und mittleren Landesteilen, hier wurden auch die meisten heißen Tage registriert, so zum Beispiel 10 Tage in Zeitz oder 9 Tage in Köthen, Osterfeld und Wittenberg. Der wärmste Tag des Sommers war dabei der 29. August, der an drei Orten die 35 Grad Marke erreichte und überschritt. Dies passierte beispielsweise mit 35,0 °C in Genthin und 35,2 °C in Demker und Möckern-Drewitz. An der LÜSA-Station in Bernburg konnten sogar 36,1 °C gemessen werden. Die Niederschlagsmenge im Flächenmittel Sachsen-Anhalts betrug im August lediglich 38,0 mm. Damit wurden im Vergleich zur Referenzperiode von 1961 bis 1990 64,4 % und im Vergleich zum Klimamittel von 1991 bis 2020 65,8 % erreicht. Der Monat startete in den ersten Tagen wechselhaft und feucht, dann blieb es aber in weiten Landesteilen bis zum Monatsende überwiegend trocken. Im Zusammenhang mit viel Sonnenschein und den hohen Temperaturen stieg die Waldbrandgefahr deutlich an. Mit nur 5,7 mm Niederschlag war Walternienburg-Ronney nicht nur der trockenste Ort Sachsen-Anhalts, sondern auch der trockenste Ort im August in ganz Deutschland. Erneut sorgten punktuelle Gewitter für lokal enorme Regenmengen. So beispielsweise in Kemberg-Radis, als am 14. August durch Gewitter alleine 84,0 mm Niederschlag fielen und im Gesamtmonat 118,4 mm. Mit 264,1 Sonnenstunden war der August der drittsonnigste seit 1951 in Sachsen-Anhalt. Dies entspricht 133,2 % im Vergleich zur Referenzperiode von 1961 bis 1990 bzw. 124,8 % im Vergleich zum 30-jährigen Mittel von 1991 bis 2020. Betrachtet man den gesamten Sommer vom 1. Juni bis zum 31. August, dann ergibt sich ein Temperaturmittel für die Fläche Sachsen-Anhalts von 19,1 °C. Dieses liegt 2,1 K über dem Wert der Referenzperiode von 1961 bis 1990 bzw. 0,9 K über dem Klimamittel von 1991 bis 2020. Dies ist vor allem dem sehr warmen August geschuldet, der durchweg ein Hochsommermonat war. Im Sommer konnten in Zeitz insgesamt 20 Tage mit 30 °C oder mehr gemessen werden, bei den Sommertagen mit 25 °C oder mehr führt Köthen mit 58 Tagen die Statistik an. Darüber hinaus gab es gerade im Süden und Osten des Landes viele warme Nächte. Vier dieser Nächte waren in Zeitz und Wittenberg so genannte Tropennächte, in denen die Temperatur nicht unter 20 °C gefallen ist. Über den Sommer hinweg sind 179,3 mm Niederschlag in Sachsen-Anhalt gefallen. Dies entspricht 103,0 % des Klimamittels von 1961 bis 1990 und gegenüber dem 30-jährigen Mittel von 1991 bis 2020 97,1 %. Der Niederschlag war aber sehr ungleichmäßig verteilt. Wiederholte kräftige Gewitter sorgten für große Unterschiede auf engem Raum. So war Kemberg-Radis mit 338,0 mm bzw. 189,1 % im Vergleich zu 1961 bis 1990 der nasseste Ort in Sachsen-Anhalt. Hingegen fielen in Genthin mit 105,2 mm Niederschlag nur 61,7 % des Sommerniederschlags. Während des Sommers schien die Sonne in Sachsen-Anhalt 728,0 Stunden. Dies entspricht im Vergleich zur Referenzperiode von 1961 bis 1990 119,4 % und zur Klimaperiode von 1991 bis 2020 110,4 %. Berechnungsgrundlage: Betrachtet wurde die produzierte Leistung im Tagesmittel im Gebiet Ostdeutschlands und Hamburgs (Gebiet des Unternehmens 50Hertz). Die produzierte Leistung wurde ins Verhältnis zur installierten Leistung gesetzt und so die Auslastung berechnet. Davon wurde ein 10-jähriges Mittel gebildet. Die Auslastung der betrachteten Jahreszeit des aktuellen Jahres wird ins Verhältnis zur Auslastung im 10-jährigen Mittel für diese Jahreszeit gesetzt. Im Sommer haben die sonnengetrieben Erneuerbaren Energien aufgrund des Sonnenstandes und der Tageslänge oft eine größere Auslastung als die windgetriebenen Erneuerbaren Energien. Dies ist vor allem bei den für diese Jahreszeit typischen schwachwindigen und sonnenscheinreichen Hochdruckwetterlagen der Fall. Während tiefdruckgeprägter Phasen mit weniger Sonne und mehr Wind, war die Windkraft der Haupterzeuger erneuerbaren Stroms. Dies war vor allem an einzelnen Tagen im Juni (05., 11., 15., 22. und 28.) gut zu erkennen, siehe Abbildung unten. Sonst sorgte das überwiegend wechselhafte Wetter im Juni dafür, dass die Auslastung der Solaranlagen häufig unterhalb des Mittelwertes von 2010 bis 2019 lag. Eine sehr sonnige Phase zeigte sich auch in der Stromerzeugung zwischen dem 25. Und 27. Juni. Eine wechselhafte, windige und kühle Phase vom 30.06. bis 06.07. sorgte für einen deutlichen Rückgang der Stromerzeugung aus Sonnenenergie zu Beginn des Monats Juli auf teils unter 60 % im Vergleich zum Mittel 2010 bis 2019. Dies konnte aber durch die Windkraft mehr als ausgeglichen werden, welche in der Spitze teils mehr als das Doppelten der üblichen Strommenge lieferte. Danach spielte der Solarstrom wieder eine wichtige Rolle, da in den Folgewochen häufig windarmes und überwiegend sonniges Hochdruckwetter dominierte. Im August sorgten in den ersten drei Tagen viele Wolken und wenig Wind für geringe Auslastung der erneuerbaren Energien. Im Anschluss folgte überwiegend ruhiges und sonniges Hochdruckwetter, womit an vielen Tagen mehr Solarstrom, als im Mittel von 2010 bis 2019 üblich, produziert werden konnte. Im Zeitraum vom 21. bis 25. kam der Windkraft eine wesentliche Rolle zu. Ursache war ein kräftiges Tiefdruckgebiet über dem Nordatlantik dem ein kräftiges Hochdruckgebiet über Südosteuropa gegenüber stand. Letzteres sorgte bei uns für viel Sonnenschein und der hohe Gradient zwischen den Druckgebieten für reichlich Wind. In diesem Zeitraum war die addierte Stromerzeugung besonders hoch. Gerade bei den windgetriebenen Erneuerbaren Energien betrug die Auslastung bis zu 350 % der üblichen Auslastung im Mittel 2010 bis 2019. In den letzten Tagen des Monats bleib es überwiegend sonnig und schwach windig, sodass gerade die Photovoltaik mehr 20 % mehr Strom produzierte als im Mittel von 2010 bis 2019. Über den ganzen Sommer gesehen blieben Windkraft mit 86,2 % und Photovoltaik mit 88,0 % unterhalb des Mittels der Jahre 2010 bis 2019.

CSP-Finance Financing Concentrating Solar Power in the Middle East and North Africa

Das Projekt "CSP-Finance Financing Concentrating Solar Power in the Middle East and North Africa" wird/wurde gefördert durch: Deutsches Zentrum für Luft- und Raumfahrt e.V.. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung.In June 2010, the DLR Group of Systems Analysis started an investigation about innovative financing of Concentrating Solar Power Plants (CSP) in countries of the Middle East and North Africa. We found a possible strategy for the market introduction of concentrating solar power (CSP) plants in the Middle East and North Africa (MENA) that will not require considerable subsidization and will not constitute a significant burden for electricity consumers in the region. In the first section, the paper explains the need of MENA countries for sustainable supply of electricity and calculates the cost of electricity for a model case country. In the second part, the cost development of concentrating solar power plants is calculated on the basis of expectations for the expansion of CSP on a global level. After that, the challenges for the market introduction of CSP in MENA are explained. Finally, we present a strategy for the market introduction of CSP in MENA, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply. The paper explains why long-term power purchase agreements (PPA) for CSP should be calculated on the basis of avoided costs, starting in the peak load segment. Such PPA are not yet available, the paper aims to convince policy makers to introduce them. The attached power point file shows some examples of time series of load and supply by CSP in the different load segments and shows the graphs used in the report. The attached Excel Sheet gives the time series of load and supply by CSP for the different load segments for a total reference year.

FH-Impuls 2016 I: skaFLEX - skalierende Flexibilität

Das Projekt "FH-Impuls 2016 I: skaFLEX - skalierende Flexibilität" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: dezera GmbH.

The frequency stability challenge

Das Projekt "The frequency stability challenge" wird/wurde ausgeführt durch: Ecofys Germany GmbH.In recent years, electricity production from distributed renewable energy generators in Germany increased significantly due to the German Renewable Energy Sources Act. Photovoltaic power plants have shown the highest growths rates in 2009 and 2010. About two thirds of photovoltaic power plants in Continental Europe are connected to low voltage networks. Related grid codes allow for distributed generation only to operate within frequency ranges that are in many cases extremely close to nominal frequency. At an abnormal system condition the frequency of a region may increase above those thresholds and distributed generators would disconnect within immediately. The paper investigates the related potential frequency stability problem and analyses mitigation measures.

Mobility2Grid: Effiziente und vernetzte Systeme für die klimaneutrale Stadt, Teilvorhaben: AP3.4 H2POWERPLANT

Das Projekt "Mobility2Grid: Effiziente und vernetzte Systeme für die klimaneutrale Stadt, Teilvorhaben: AP3.4 H2POWERPLANT" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: WILO SE.

Predictive Spatial Analytics for Solar Energy Grid Integration: Enhancing Reliability and Efficiency

Das Projekt "Predictive Spatial Analytics for Solar Energy Grid Integration: Enhancing Reliability and Efficiency" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Technische Hochschule Rosenheim, Zentrum für Forschung, Entwicklung und Transfer.

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme, TVH: Systemintegration

Das Projekt "Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme, TVH: Systemintegration" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: GP JOULE Think GmbH & Co. KG.Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme

Das Projekt "Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme" wird/wurde ausgeführt durch: GP JOULE Think GmbH & Co. KG.Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

1 2 3 4 561 62 63