API src

Found 1029 results.

Related terms

CCS - Environmental protection framework for an emerging technology

What is ⁠ CCS ⁠? - The objective of CCS technology is the reduction of ⁠ CO2 ⁠ emissions into the atmosphere, which occur, above all, in the combustion of fossil fuels at large point sources. - The climate-protection effect of CCS requires a functioning process chain comprising capture, transport and permanent storage. - CCS is not yet available. None of the above three steps is presently sufficiently developed. It is therefore not clear whether CCS could be an option for large-scale CO2 emission reduction and thus a significant climate protection measure. Veröffentlicht in Hintergrundpapier.

CCS - Gesetzentwurf

Bundeswirtschaftsminister Rainer Brüderle und Bundesumweltminister Dr. Norbert Röttgen haben am 14. Juli 2010 in Berlin die Eckpunkte des gemeinsamen Gesetzentwurfs zur Demonstration und Anwendung von Technologien zur Abscheidung, zum Transport und zur dauerhaften Speicherung von Kohlendioxid (CO2) vorgestellt. Mit dem Gesetzentwurf entscheidet sich die Bundesregierung für ein schrittweises Vorgehen bei der weiteren Entwicklung der Technologien. Deshalb wird zunächst nur die Erprobung und Demonstration von Speichern mit dem Gesetzentwurf zugelassen und der Entwicklungsstand der Technologien 2017 umfassend evaluiert. Der Gesetzentwurf hat nach seiner Aussetzung im Sommer 2009 eine anspruchsvolle Überarbeitung erfahren.

Markt für Zinn

technologyComment of tin production (RoW): The technology used by the Ausmelt Furnace, for the smelting of tin concentrates, is based on the patent developed by the Commonwealth Scientific and Industrial Research Organization of Australia CSIRO. None technologyComment of tin production (PE): The technology used by the Ausmelt Furnace, for the smelting of tin concentrates, is based on the patent developed by the Commonwealth Scientific and Industrial Research Organization of Australia CSIRO. The slag is sent to San Rafael mine where is used for the paste- filling process, therefore the system does not include slag storage and treatment.

Systemvergleich speicherbarer Energieträger aus erneuerbaren Energien

Im Zuge der Transformation zu einer treibhausgasneutralen Gesellschaft in der zweiten Hälfte des 21. Jahrhunderts wird der Einsatz von synthetischen Energieträgern diskutiert, die auf erneuerbarem Strom oder Biomasse basieren. Dieses Vorhaben bewertet die Umweltwirkungen technischer und logistischer Optionen für die Bereitstellung solcher Energieträger anhand von Umweltwirkungskategorien wie Treibhauspotenzial, Versauerung oder Flächenbedarf. Auf Basis ausgewählter Prozessschritte/Verfahren und deren aktuellen und zukünftigen technischen Daten wurde die Herstellung von fünf Produkten (Fischer-Tropsch-Kraftstoffe, Methanol, synthetisches Erdgas, Biomethan und Wasserstoff) betrachtet. Die Verfügbarkeit erneuerbarer Energiequellen wie Wind oder PV, von Rohstoffen wie Kohlenstoff oder Wasser sowie von Transportrouten nach Deutschland bildeten die Standortfaktoren für Deutschland, Europa und den Mittelmeerraum, mittels derer die Verfahren zu Bereitstellungspfaden für diese Energieträger kombiniert wurden. Mit der Methode der Ökobilanz wurden die Umwelteffekte heute und im Jahr 2050 analysiert sowie Kosten für die Anlagenerrichtung und den Betrieb geschätzt. Demnach weisen synthetische Energieträger aufgrund der Nutzung erneuerbarer Energien in der Regel ein deutlich niedrigeres Treibhauspotenzial als heutige fossile Referenzprodukte auf. Die Herstellung der Stromerzeugungsanlagen und damit verbundene Wirtschaftsprozesse - etwa die Stahl- und die Zementproduktion - können jedoch einen relevanten Beitrag zum Treibhauspotenzial leisten, wenn sie nicht ebenfalls treibhausneutral sind. Gleichzeitig führen vor allem die Herstellung der erforderlichen Anlagen gegenüber der fossilen Referenz zu (mitunter deutlich) erhöhten Belastungen in fast allen anderen Wirkungskategorien, insbesondere im Wasser- und Flächenbedarf. Diese Studie liefert somit auch Hinweise, welche Umweltwirkungen zukünftig weiter reduziert werden müssen. Quelle: Forschungsbericht

Detailanalysen zum Systemvergleich speicherbarer Energieträger aus erneuerbaren Energien

Im Zuge der Transformation zu einer treibhausgasneutralen Gesellschaft in der zweiten Hälfte des 21. Jahrhunderts wird der Einsatz von synthetischen Energieträgern diskutiert, die auf erneuerbarem Strom oder Biomasse basieren. Dieses Vorhaben bewertet die Umweltwirkungen technischer und logistischer Optionen für die Bereitstellung solcher Energieträger anhand von Umweltwirkungskategorien wie Treibhauspotenzial, Versauerung oder Flächenbedarf. Auf Basis ausgewählter Prozessschritte/Verfahren und deren aktuellen und zukünftigen technischen Daten wurde die Herstellung von fünf Produkten (Fischer-Tropsch-Kraftstoffe, Methanol, synthetisches Erdgas, Biomethan und Wasserstoff) betrachtet. Die Verfügbarkeit erneuerbarer Energiequellen wie Wind oder PV, von Rohstoffen wie Kohlenstoff oder Wasser sowie von Transportrouten nach Deutschland bildeten die Standortfaktoren für Deutschland, Europa und den Mittelmeerraum, mittels derer die Verfahren zu Bereitstellungspfaden für diese Energieträger kombiniert wurden. Mit der Methode der Ökobilanz wurden die Umwelteffekte heute und im Jahr 2050 analysiert sowie Kosten für die Anlagenerrichtung und den Betrieb geschätzt. Demnach weisen synthetische Energieträger aufgrund der Nutzung erneuerbarer Energien in der Regel ein deutlich niedrigeres Treibhauspotenzial als heutige fossile Referenzprodukte auf. Die Herstellung der Stromerzeugungsanlagen und damit verbundene Wirtschaftsprozesse - etwa die Stahl- und die Zementproduktion - können jedoch einen relevanten Beitrag zum Treibhauspotenzial leisten, wenn sie nicht ebenfalls treibhausneutral sind. Gleichzeitig führen vor allem die Herstellung der erforderlichen Anlagen gegenüber der fossilen Referenz zu (mitunter deutlich) erhöhten Belastungen in fast allen anderen Wirkungskategorien, insbesondere im Wasser- und Flächenbedarf. Diese Studie liefert somit auch Hinweise, welche Umweltwirkungen zukünftig weiter reduziert werden müssen. Quelle: Forschungsbericht

Teil 6

Das Projekt "Teil 6" wird vom Umweltbundesamt gefördert und von Stadtwerke Karlsruhe Netze GmbH durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT) durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 5

Das Projekt "Teil 5" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Gebäude- und Energiesysteme durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 4

Das Projekt "Teil 4" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für System- und Innovationsforschung durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 3

Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Elektroenergiesysteme und Hochspannungstechnik durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

1 2 3 4 5101 102 103