Bereitstellung der Sentinel 2-Satellitendaten mit einer geometrischen Auflösung von 20 m. Es stehen 10 Spektralbereiche zur Verfügung.
Bereitstellung der Sentinel 2-Satellitendaten mit einer geometrischen Auflösung von 10 m. Es stehen 4 Spektralbereiche zur Verfügung.
Das Dynamische Mosaik setzt sich aus aktuellen wolkenfreien Aufnahmen von Sentinel-2 Orthobildern zusammen. Die beiden baugleichen Sentinel-2 Satelliten des europäischen Erdbeobachtungsprogramms Copernicus liefern seit 2015 bzw. 2017 kontinuierlich Aufnahmen der Erdoberfläche. Der multispektrale optische Sensor verfügt über 13 Spektralkanäle im sichtbaren und infraroten Bereich. Dabei variiert die räumliche Auflösung von 10 m (Kanäle B02, B03, B04, B08) über 20 m (Kanäle B05, B06, B07, B08A, B11, B12) bis hin zu 60 m (Kanäle B01, B09, B10). Die Sentinel-2 Daten werden originär in den Prozessierungsleveln Level-1C (Top-Of-Atmosphere) und Level-2A (Bottom-Of-Atmosphere) angeboten und in Kachelgrößen von 100 x 100 km2 in UTM/WGS84 Projektion bereitgestellt. Für NRW liegen durch die hohe Wiederkehrrate der Satelliten alle 2-3 Tage flächendeckend aktuelle Aufnahmen vor. Da es sich bei dem Multispektralinstrument um ein passives System handelt, ist die Verwendbarkeit der Aufnahmen allerdings wetterabhängig. Die verfügbaren Orthobilder weisen unterschiedliche Wolkenbedeckungsgrade auf. Zur Ableitung des Dynamischen Mosaiks werden die aktuellen Sentinel-2 Bilder auf Wolkenbedeckung überprüft, so dass die wolkenfreien Bereiche selektiert werden können. Bereiche älterer Aufnahmen werden kontinuierlich durch aktuelle wolkenfreie Bilder ersetzt. Dabei werden die 4 Spektralbänder mit einer räumlichen Auflösung von 10 m (Rot, Grün, Blau, Nahes Infrarot) der Level-2A Daten berücksichtigt. Der Datensatz wird bei Vorliegen eines wolkenfreien Bereichs ab einer Größe von 100 zusammenhängenden 10 m x 10 m Pixeln fortgeschrieben, so dass stets die aktuellen wolkenfreien Aufnahmen im Mosaik enthalten sind. Das Dynamische Mosaik wird als Darstellungsdienst in den Ausprägungen RGB (Komposit aus den Spektralbändern B04-B03-B02) und CIR (Komposit aus den Spektralbändern B08-B04-B03) bereitgestellt. Darüber hinaus wird das Aufnahmedatum der jeweiligen Sentinel-2 Szene für jeden wolkenfreien Bereich zur Verfügung gestellt. Das Aufnahmedatum wird über die Sachdatenabfrage des Metadatenlayers angezeigt.
Die Anwendung von UV-Strahlung, insbesondere von UV-C-Strahlung zur Desinfektion von Raumluft und Oberflächen, ist in den letzten Jahrzehnten stetig weiter in den Fokus gerückt. Angetrieben durch Anwendungen wie die Entkeimung im medizinischen Bereich oder der Wasseraufbereitung. Diese Entwicklung wurde durch die SARS-CoV-2 Pandemie, umgangssprachlich Corona-Pandemie, speziell im Bereich der Allgemeinbevölkerung massiv beschleunigt. Gerade die Raumluftdesinfektion rückte hierbei in den Fokus, weshalb neben dem gewerblichen Einsatz von UV-C Desinfektionsgeräten auch die Anzahl der Anwendungen im nicht-gewerblichen Bereich steigt. Untermauert wird diese Annahme durch eine repräsentative Umfrage des Office for Product Safety and Standard (OPSS) in Großbritannien, welche zeigte, dass im April 2020 bis Juli 2020 in der Hochphase der Pandemie 5% der Verbraucher kürzlich ein UVC-Gerät gekauft oder verwendet hatten (OPSS 2022). Den Autoren sind keine vergleichbaren Umfragen oder Daten für Deutschland bekannt. Es ist allerdings davon auszugehen, dass auch in Deutschland die Anzahl der Käufer und Nutzer dieser Geräte und somit deren Verbreitung und Anwendung im privaten und öffentlichen Raum deutlich zugenommen hat. Bei der Anwendung von UV-Strahlung kann jedoch eine Gefährdung für Haut und Augen bestehen. Deshalb ist eine korrekte Charakterisierung im Hinblick auf das Risiko für die Bevölkerung durch relevante UV-Strahlungsquellen und die Überprüfung der Herstellerinformationen der Strahlungsquellen wichtig. Im Rahmen dieses Projektes werden herstellerunabhängige spektrale Messungen gemäß dem aktuell anzuwendenden Normen und Empfehlungen von 41 verschiedenen Geräten mit UV-Strahlungsquellen aus dem Bereich der Allgemeinbevölkerung durchgeführt. Hierbei wird zudem eine Risikobewertung bezüglich Augen und Haut sowie eine Klassifizierung gemäß internationaler und nationale Grenzwertempfehlungen unter der Berücksichtigung von Kriterien wie Art und Häufigkeit der Exposition erbracht. Dies wird wie angesprochen mit den Herstellerangaben abgeglichen um eine Bewertung für die Allgemeinbevölkerung hinsichtlich sicherer Handhabung der Geräte abgeben zu können. Hinweis: An der Stelle wird darauf hingewiesen, dass lediglich die UV-Strahlenschutzthemen bewertet werden und sonstige Auffälligkeiten des geschulten Anwenders gemäß UV-Strahlenschutz, nicht aber eine Aussage bezüglich der Funktion der Geräte hinsichtlich Desinfektion oder anderer Eigenschaften getroffen wird. Auch wird hier keine abschließend wertende Aussage über die Geräte getätigt, sondern lediglich die Messwerte hinsichtlich des Strahlenschutzes und die daraus folgende Klassifizierung genannt und bewertet.
Ziel der vorliegenden Studie war es vornehmlich, für einen möglichst repräsentativen Querschnitt an am Markt verfügbaren Verbraucherprodukten, die entweder Laserstrahlung oder inkohärente optische Strahlung emittieren, durch messtechnische Untersuchungen der betreffenden Produkte zu validen Aussagen hinsichtlich einer Abschätzung der potenziellen Risiken für die Augen zu gelangen. Dabei wurde ein besonderes Augenmerk auf eine mögliche Blaulichtgefahr und auf Blendung als indirekte Gefährdung, die von Produkten im sichtbaren Spektralbereich ausgehen kann, gelegt.
Aufgrund der großen Anzahl von 4730 Verbindungen (OECD 2018) [1], die dem Spektrum der per- und polyfluorierten Verbindungen (PFAS) zugeordnet werden, ist die vollständige Erfassung dieser Substanzgruppe durch analytische Methoden schwierig. PFAS sind nach aktueller OECD Definition von 2021 fluorierte Stoffe, die mindestens ein vollständig fluoriertes Methyl- (-CF3) oder Methylen-Kohlenstoffatom(-CF2-) (ohne daran gebundenes H/Cl/Br/IAtom) enthalten. [2]. Nach heutigen Kenntnisstand müssen wir von bis zu 10.000 Verbindungen ausgehen. Die Bund/Länder-Arbeitsgemeinschaft (LAWA) hat 2017 für 13 PFAS-Verbindungen die Bewertungsgrundlage geschaffen [3]. Für die Bestimmung von Einzelstoffen existieren bereits seit einigen Jahren vom Deutschen Institut für Normung (DIN) Normen für unterschiedliche Matrizes [4] [5] [6]. Jedoch sind heute gerade mal weniger als 1 Prozent aller PFAS-Verbindungen über diese Einzelstoffanalytik zugängig. Der größte Anteil der polyfluorierten Verbindungen, die zu den Vorläuferverbindungen zählen, ist mit der reinen Einzelstoffanalytik nicht bestimmbar. Nach dem TOP-Assay-Verfahren von Houtz und Sedlak aus dem Jahr 2012 können durch eine alkalische Oxidation mit Peroxodisulfat bei Temperaturen von 85 ËÌC (+/- 3 ËÌC) diese Vorläuferverbindungen in bestimmbare Perfluorcarbonsäuren (PFCA) umgewandelt werden [7]. Durch eine Gehaltsbestimmung der PFCA vor und nach Oxidation kann der Gehalt an Vorläuferverbindungen (semi-)quantifiziert werden. Eine Potentialabschätzung der nachbildbaren PFCA aus Vorläuferverbindungen könnte für eine weitergehende Bewertung von Schadenfällen für den Wirkungspfad Boden - Grundwasser hilfreich sein. TOP (â ÌPFCA) = ((â Ì PFCA oxidiertes Aliquot M2 -â Ì PFCA unbehandeltes Aliquot M1) [Ìg/l]) [7] Im Rahmen des Projektes sollten die Grundlagen geschaffen werden, um das TOP-AssayVerfahren für die Bestimmung von PFAS in Bodeneluaten zu normen. Hierfür wurde eine Standardarbeitsanweisung geschrieben, eine Robustheitsstudie und eine Vergleichsuntersuchung mit elf Laboren durchgeführt. Der Normenentwurf wird unter den Kennzeichen DIN 3608:2022-03 beim DIN geführt [8]. Durch die Normung sind in unterschiedlichen Laboren vergleichbare Ergebnisse wahrscheinlicher. Quelle: Forschungsbericht
Das Dynamische Mosaik setzt sich aus aktuellen wolkenfreien Aufnahmen von Sentinel-2 Orthobildern zusammen. Die beiden baugleichen Sentinel-2 Satelliten des europäischen Erdbeobachtungsprogramms Copernicus liefern seit 2015 bzw. 2017 kontinuierlich Aufnahmen der Erdoberfläche. Der multispektrale optische Sensor verfügt über 13 Spektralkanäle im sichtbaren und infraroten Bereich. Dabei variiert die räumliche Auflösung von 10 m (Kanäle B02, B03, B04, B08) über 20 m (Kanäle B05, B06, B07, B08A, B11, B12) bis hin zu 60 m (Kanäle B01, B09, B10). Die Sentinel-2 Daten werden originär in den Prozessierungsleveln Level-1C (Top-Of-Atmosphere) und Level-2A (Bottom-Of-Atmosphere) angeboten und in Kachelgrößen von 100 x 100 km2 in UTM/WGS84 Projektion bereitgestellt. Für NRW liegen durch die hohe Wiederkehrrate der Satelliten alle 2-3 Tage flächendeckend aktuelle Aufnahmen vor. Da es sich bei dem Multispektralinstrument um ein passives System handelt, ist die Verwendbarkeit der Aufnahmen allerdings wetterabhängig. Die verfügbaren Orthobilder weisen unterschiedliche Wolkenbedeckungsgrade auf. Zur Ableitung des Dynamischen Mosaiks werden die aktuellen Sentinel-2 Bilder auf Wolkenbedeckung überprüft, so dass die wolkenfreien Bereiche selektiert werden können. Bereiche älterer Aufnahmen werden kontinuierlich durch aktuelle wolkenfreie Bilder ersetzt. Dabei werden die 4 Spektralbänder mit einer räumlichen Auflösung von 10 m (Rot, Grün, Blau, Nahes Infrarot) der Level-2A Daten berücksichtigt. Der Datensatz wird bei Vorliegen eines wolkenfreien Bereichs ab einer Größe von 100 zusammenhängenden 10 m x 10 m Pixeln fortgeschrieben, so dass stets die aktuellen wolkenfreien Aufnahmen im Mosaik enthalten sind. Das Dynamische Mosaik wird als Darstellungsdienst in den Ausprägungen RGB (Komposit aus den Spektralbändern B04-B03-B02) und CIR (Komposit aus den Spektralbändern B08-B04-B03) bereitgestellt. Darüber hinaus wird das Aufnahmedatum der jeweiligen Sentinel-2 Szene für jeden wolkenfreien Bereich zur Verfügung gestellt. Das Aufnahmedatum wird über die Sachdatenabfrage des Metadatenlayers angezeigt.
Airguns werden bei seismischen Erkundungen und wissenschaftlichen Untersuchungen eingesetzt und erzeugen impulshafte Schallsignale mit hoher Intensität im tieffrequenten Bereich. Abgesehen von der Möglichkeit, permanente oder temporäre Hörschädigungen zu induzieren oder Verhaltensreaktionen auszulösen, können Airgungsignale die Wahrnehmung relevanter akustischer Signale in der Umwelt maskieren. Dieser Frequenzbereich überschneidet sich mit vielen Vokalisationen von Meeressäugern, insbesondere den Gesängen und Rufen von Bartenwalen. Auf Grund der hohen Quellschallpegel besitzen Airguns das Potential Kommunikationssignale von Meeressäugern auch noch in großen Entfernungen zu maskieren. Dieses Potential zur Maskierung von Kommunikationssignalen im Südpolarmeer wird in dieser Studie mithilfe eines Modellierungsansatzes bewertet. Um die Ausbreitung von Airgunimpulsen im Südpolarmeer zu modellieren, wurde eine parabolische Gleichungsnäherung verwendet,. Die Ausbreitungsmodelle wurden anhand von Aufzeichnungen zweier seismischer Vermessungen im Südpolarmeer validiert. Die Modellvorhersagen zeigen eine große Übereinstimmung in den empfangenen Schallpegel und den Frequenzspektren mit den Messergebnissen und weichen nur um wenige Dezibel ab. Durch die von einer Punktquelle ausgehende dreidimensionale Schallsusbreitung und den resultierenden Reflektionen an der Wasseroberfläche und dem Meeresboden ergeben sich mehrere Strahlengänge. Diese Strahlengänge, die Schallquelle und Empfänger verbinden, besitzen unterschiedliche Längen, so dass Signale über die verschiedenen Wege den Empfänger nicht gleichzeitig erreichen. Die Dauer der empfangenen Signale nimmt entsprechend mit der Entfernung von der Schallquelle zu. Das Ausmaß dieser sogenannten Signalstreckung wurde vom Ausbreitungsmodell leicht unterschätzt. Für Airguns, die über dem australischen Festlandsockel eingesetzt wurden, wurde die höchste Korrelation mit dem SOFAR-Kanal (Sound Fixing and Ranging) gefunden, wenn die Wassertiefe im Bereich von 300 bis 700 Metern lag, woraus sich sehr große Ausbreitungsdistanzen ergeben. Es wurde festgestellt, dass Übertragungsverluste in der Region südlich der Polarfront maßgeblich durch die Schallstreuung an der Oberfläche, ausgelöst durch Windwellen beeinflusst wird. Die validierten Ausbreitungsmodelle ermöglichen es, die empfangenen Schallpegel der Airgun- und Vokalisierungssignale am Ohr des Tieres für jede Entfernung zur Airgun sowie zu vokalisierenden Artgenossen vorherzusagen. Ein psychophysisches Modell basierend auf einem Spektrogramm-Korrelationsempfänger wurde entwickelt, um die zeitlichen und spektralen Auflösungseigenschaften des tierischen Hörvermögens widerzuspiegeln. Das Modell sagt vorher, dass Kommunikationsreichweiten von Blau- und Finnwalen in Entfernungen zwischen 1000 und 2000 Kilometern von dem Airgunmessungen, noch erheblich beeinträchtigt sein können. Für den Einsatz von Airguns in einer Entfernung von 2000 km vom hörenden Individuum modelliert es eine Reduzierung der Detektionsreichweite für Z-Rufe von Blauwalen in der Antarktis von 40 km (natürliche Kommunikationsreichweite unter Bedingungen mit hohem Umgebungsgeräusch) auf 15 km. Der Kontext, in dem Blauwal-Z-Rufe und Finnwal-20-Hz-Rufe erzeugt werden, zeigt, dass diese Rufe wichtige Funktionen für die Paarung und möglicherweise Nahrungssuche haben und somit eine Langstreckenkommunikation erfordern. Bei Arten mit hochfrequenten oder breitbandigen Lautäußerungen wie Schwertwalen und Weddellrobben hängt das Ausmaß der Kommunikationsmaskierung davon ab, wie stark Tiere von dem tieffrequenten Anteil der Lautäußerungen abhängig sind, um biologisch relevante Informationen zu extrahieren. Diese Abhängigkeit wurde bislang jedoch noch nicht untersucht. Quelle: Forschungsbericht
Das Projekt "Teilvorhaben: AP1.1b, AP 1.2c und AP 3.1b" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Antriebstechnik durchgeführt. Vorhabenbeschreibung AP 1.1b: Die heutige Vorgehensweise der industriellen aerodynamischen und strukturmechanischen Turbomaschinen Schaufel-Auslegung ist disziplinär und sequenziell organisiert. Im Rahmen des Vorhabens soll dies durch interdisziplinäre Prozessketten und automatisierte Optimierungsstrategien abgelöst werden. Durch eine zielgerichtete Nutzung von Methoden aus dem Bereich Maschinelles Lernen (ML) und künstliche Intelligenz (KI) werden datengetriebene Modelle für die physikalisch umfassende digitale Modellierung bereitgestellt. Vorhabenbeschreibung AP 1.2: Mit dem Harmonic-Balance-Verfahren steht dem DLR ein hochwertiges Frequenzbereichsverfahren für instationäre Strömungssimulationen zur Verfügung, das deutlich effizienter als konventionelle, instationäre Zeitbereichsverfahren (URANS) bei akzeptablem Genauigkeitsverlust ist. Aufgrund sekundärer, instationärer Effekte, deren physikalische Frequenzen nicht Teil des aufgelösten Spektrums sind, konvergieren bis zu einem Drittel der Flatter-Simulationen mit Harmonic Balance nicht. Auslöser sind gerade in den aeroelastischen Bewertungspunkten auftretende strömungsinduzierte Effekte wie Stoß-Grenzschicht-Wechselwirkungen und offene Ablösungen. Vorhabenbeschreibung AP3.1: Das Arbeitspaket teilt sich in zwei Bereiche auf, die jeweils der Untersuchung des entstehenden Wärmeeintrags und des Verschleißes, ausgelöst durch Anstreifen zwischen Bürstendichtung und Rotor, gewidmet sind. Es wird ein Modell zur Beschreibung des Verschleißes erstellt und mit den am DLR erhobenen Versuchsdaten verbessert und validiert. Der beim Anstreifen entstehende Wärmeeintrag wird bestimmt. Die Erkenntnisse sind für die Ertüchtigung der Bürstendichtung als Inner Air Seal essentiell, um den Verschleiß im Betrieb sowie Wärmeeintrag in den Rotor beschreiben zu können.
Das Projekt "Flurex 82" wird vom Umweltbundesamt gefördert und von Universität Oldenburg, Fachbereich 8 Physik, Arbeitsgruppe Akustik durchgeführt. Zur Fernmessung von Phytoplankton im Meer wurde in den vergangenen Jahren ein Verfahren entwickelt, das als Signal die durch Sonnenlicht angeregte Fluoreszenz des Chlorophylls nutzt. Simultane Messungen vom Flugzeug und Schiff haben gezeigt, dass dieses Verfahren eine Reihe von erheblichen Vorteilen gegenueber der bisher verwendeten Bestimmung der Wasserfarbe im blau-gruenen Spektralbereich besitzt. Im Rahmen eines deutsch-kanadischen Kooperationsvertrages soll untersucht werden, unter welchen Bedingungen dieses Verfahren auch vom Satelliten aus einsetzbar ist. Ziel des Experiments Flurex 82 ist es, die Schwankungsbreite der konzentrationsbezogenen Fluoreszenz als Funktion des Zustandes verschiedener Phytoplanktonpopulationen und Umweltbedingungen zu untersuchen. Beteiligte Institutionen: Inst. of Ocean Sciences Sidnex, B.C. Canada, DFVLR Oberpfaffenhofen Institut fuer Meereskunde, Kiel, Institut fuer Angewandte Physik Kiel, GKSS Geesthacht.
Origin | Count |
---|---|
Bund | 1142 |
Land | 16 |
Type | Count |
---|---|
Förderprogramm | 1127 |
Text | 13 |
unbekannt | 14 |
License | Count |
---|---|
closed | 18 |
open | 1134 |
unknown | 2 |
Language | Count |
---|---|
Deutsch | 1151 |
Englisch | 175 |
unbekannt | 2 |
Resource type | Count |
---|---|
Bild | 2 |
Dokument | 6 |
Keine | 791 |
Multimedia | 1 |
Webdienst | 3 |
Webseite | 357 |
Topic | Count |
---|---|
Boden | 737 |
Lebewesen & Lebensräume | 807 |
Luft | 1154 |
Mensch & Umwelt | 1154 |
Wasser | 630 |
Weitere | 1148 |