Die Westantarktis ist eine der Regionen der Erde, die am sensibelsten auf den aktuellen Klimawandel reagiert. Ein Zusammenbruch dieses Eisschildes in einem wärmeren Klima würde dramatische Folgen für den globalen Meeresspiegelanstieg haben. Dabei spielt nicht nur der Anstieg der globalen Mitteltemperatur eine Rolle, sondern in gleichem Maße auch Veränderungen der Klimavariabilität. Diese Veränderungen können das labile westantarktische System an Kipppunkte bringen, die wiederum zu unwiderruflichen eisdynamischen Prozessen führen. Um diese zum Teil abrupten Veränderungen in Zukunft besser einschätzen zu können, müssen diesbezügliche Modellprojektionen auf einer soliden Datenbasis stehen. Paläoklimatische Zeitreihen, in diesem Fall aus Eisbohrkernen, bieten solch eine Datengrundlage. Besonders interessant sind hierbei Zeitreihen, die zurückreichen in das letzte Glazial, oder idealerweise in die davorliegende letzte natürliche Warmzeit (ca. 110 000 - 130 000 Jahre vor heute). Solche langen Zeitreihen aus der Westantarktis sind allerdings bisher nur spärlich vorhanden. Im Rahmen des WACSWAIN Projekts (WArm Climate Stability of the West-Antarctic Ice sheet in the last iNterglacial) wurde kürzlich ein neuer Eiskern auf Skytrain Ice Rise gebohrt, der einen Zeitraum bis 126 000 Jahre vor heute abdeckt. Umfassende kontinuierliche Datensätze der stabilen Wasserisotope, der chemischen Spurenstoffe und der physikalischen Parameter wurden im Rahmen von WACSWAIN erhoben und stehen nun für weitere Analysen zur Verfügung. Außerdem wurden zum ersten Mal parallel zu den kontinuierlichen Messungen ausschnittweise Abschnitte des Kerns mit der ultra-hochauflösenden Methode der Laser Ablation (LA-ICP-MS) auf ihren Spurenstoffgehalt untersucht. Dies erlaubt die Analyse von Veränderungen in bisher nicht verfügbarer Detailliertheit. Das Ziel des hier vorgestellten Projektes ist es diese hochaufgelösten Signale zusammen mit den kontinuierlichen zu nutzen, um die Veränderungen der Klimavariabilität in dieser Region der Westantarktis in beispielloser Genauigkeit für den letzten glazialen Zyklus statistisch zu analysieren. Ein besonderer Fokus wird dabei auf Phasen mit abrupten Änderungen in den Temperatur- und Eisbedeckungsproxies, wie zum Beispiel einem signifikanten Anstieg der marinen Ionenkonzentration und der Wasserisotope im frühen Holozän, liegen. Die statistischen Analysen der vergangenen Klimavariabilität (Varianz, Amplitude, Skalierungsfaktoren) werden im Folgenden genutzt, um die aktuell zu beobachtenden Veränderungen in der Westantarktis besser verstehen zu können. Dies wird zusätzlich unterstützt durch das Testen der wissenschaftlichen Hypothesen über die Ursachen der Veränderungen mittels spezifischer, isotopengetriebener globaler Zirkulationsmodelle, sowie chemischer Transportmodelle atmosphärischer Spurenstoffe. Dieses Projekt wird somit einen wichtigen Beitrag zum Verständnis der westantarktischen Klimasystems in der Vergangenheit und Zukunft leisten.
Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Es wurde ein System zur Verwaltung großer Datenmengen aus dem Non-Target Screening (NTS) entwickelt, einer Technik zur Identifizierung von organischen Spurenstoffen im Wasser. Das System (genannt NTSPortal) ist von entscheidender Bedeutung für die Anwendung von NTS im Gewässerschutz, da NTS Daten aus tausenden von Parametern bestehen, die aus vielen Proben und durch unterschiedliche Labore generiert werden. Um Vergleiche über Raum und Zeit mit diesen großen Datenmengen durchzuführen, ist ein digitales Archiv erforderlich. Das System besteht aus Skripten für die Prozessierung von Messdaten, der Sicherung der Daten in einer Datenbank und der Visualisierung der Daten auf einem interaktiven Web-Dashboard. Dies ermöglicht die schnelle Erstellung räumlicher Übersichten, in denen Schadstoff-Hotspots hervorgehoben werden, sowie langfristige Trendanalysen (z. B. von neuen Arzneimitteln in Flüssen). Darüber hinaus erleichtert das System die Identifizierung bisher unbekannter Spurenstoffe, z.B. durch die Analyse täglicher Proben aus Oberflächengewässer. Das NTSPortal bietet einen neuartigen, vielversprechenden Ansatz für die Integration von NTS im Gewässerschutz und der Chemikalienbewertung. Veröffentlicht in Texte | 21/2025.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Ziel des Projektes ist es zu untersuchen, welche Möglichkeiten freiwillige Maßnahmen zum Schutz der Gewässer vor Spurenstoffeinträgen bieten und wie die Bereitschaft von ?Stakeholder?n zu freiwilligen Maßnahmen in diesem Bereich erhöht werden kann. Dazu analysieren die Forschungsnehmer zunächst die Rahmenbedingungen für den Erfolg freiwilliger Maßnahmen und legen entsprechende Kriterien fest. Die Chancen freiwilliger Maßnahmen werden anhand konkreter Beispiele identifiziert. Gleichzeitig werden die Grenzen freiwilliger Maßnahmen herausgearbeitet und damit aufgezeigt, wo weitergehende Anstrengungen notwendig sind bzw. wann gesetzliche Reglungen zielführender wären. Ein weiterer Baustein des Projekts besteht darin, Instrumente zu entwickeln, die für die Thematik Spurenstoffe in Gewässern sensibilisieren. Das Bewusstsein der beteiligten Akteure sowie der Bürger*innen soll somit erhöht werden. Basierend auf den gewonnenen Erkenntnissen werden Handlungsempfehlungen erstellt. Daraus soll hervorgehen, unter welchen Bedingungen freiwillige Maßnahmen effektiv sind und wie die Bereitschaft zur Teilnahme an solchen Maßnahmen gesteigert werden kann. Hierbei können unterschiedliche Stakeholder mit einbezogen werden, etwa beteiligte Unternehmen in der Herstellung bzw. Formulierung von Stoffen, spezifische Berufsgruppen, Wasser- und Abwasserverbände, Umweltverbände oder auch der Verbraucherschutz und Bürger*innen. Das Vorhaben steht in engem Bezug zu Aktivitäten auf europäischer Ebene zur Vermeidung von Schadstoffbelastungen für Mensch und Umwelt: Die Europäische Kommission legte dazu im Rahmen des Europäischen Grünen Deals den Null-Schadstoff-Aktionsplan und die Chemikalienstrategie für ?Nachhaltigkeit? vor.
Schutz der Bevoelkerung vor Inkorporation von radioaktiven Stoffen mit der Nahrung; Feststellung der Kontamination der verschiedenen Glieder der Nahrungskette Boden - Bewuchs - Milch mit Radioisotopen, die durch Kernwaffen oder aus nuklearen Anlagen in die Umwelt gelangen.
Epidemiologische Auswertung betreffend der Haeufigkeit kardiologischer Erkrankungen.
Sedimentaere oxidische Manganlagerstaetten koennen hohe Konzentrationen der umweltfeindlichen Elemente Pb, Zn, Cd, Ba, Tl und Mo enthalten, deren Bindung aufgrund der elektrostatischen Eigenschaften der Mangan-Oxidhydrate durch Adsorption erfolgt. Waehrend der Diagenese-Metamorphose werden diese Elemente auf die nun im Gleichgewicht befindlichen oxidischen, silikatischen und im Falle der Lagerstaette Ultevis auch karbonatischen Phasen umverteilt. Diese Phasen sind unterschiedlich verwitterungsanfaellig und fuehren daher in unterschiedlicher Weise die umweltrelevanten Spurenstoffe in den Verwitterungszyklus zurueck.
Origin | Count |
---|---|
Bund | 1200 |
Kommune | 1 |
Land | 138 |
Wissenschaft | 5 |
Type | Count |
---|---|
Daten und Messstellen | 3 |
Ereignis | 3 |
Förderprogramm | 1091 |
Text | 166 |
Umweltprüfung | 1 |
unbekannt | 75 |
License | Count |
---|---|
geschlossen | 235 |
offen | 1094 |
unbekannt | 10 |
Language | Count |
---|---|
Deutsch | 1283 |
Englisch | 149 |
Resource type | Count |
---|---|
Bild | 12 |
Datei | 4 |
Dokument | 73 |
Keine | 834 |
Unbekannt | 2 |
Webseite | 467 |
Topic | Count |
---|---|
Boden | 963 |
Lebewesen und Lebensräume | 1059 |
Luft | 894 |
Mensch und Umwelt | 1339 |
Wasser | 1194 |
Weitere | 1315 |