Veranlassung Methoden des maschinellen Lernens kommen in der gewässerkundlichen Praxis der BfG bisher nur vereinzelt zum Einsatz. Der Einsatz von ML entspricht in vielen Bereichen aber bereits dem Stand von Wissenschaft und Technik und hält zunehmend Einzug auch in gewässerkundliche Fragestellungen. ML besitzt das Potenzial, zum einen bestehende Aufgaben und Methoden qualitativ zu optimieren (z. B. in Form verbesserter Prognosemethoden). Zum anderen werden durch den Einsatz von ML arbeitsaufwändige, mit klassischen Ansätzen nicht leistbare Analysen erst möglich, wodurch auch gänzlich neue oder substanziell erweiterte Leistungen und Produkte entstehen. Der unmittelbare Anwendungs- und Aufgabenbezug von MALPROG lässt diesbezüglich konkrete Ergebnisse für relevante Fachaufgaben sowie zielführende Erkenntnisse für eine Übertragung auf weitere Arbeitsfelder der BfG erwarten. Ziele Die übergeordneten Ziele von MALPROG sind - wissenschaftliche Erkenntnis und Datenharmonisierung: Untersuchung praktischer Anwendbarkeit von Methoden des maschinellen Lernens für ausgewählte BfG-Fachaufgaben (Messdatenplausibilisierung, Abfluss- und Wasserstandsvorhersage, Vegetationskartierung, Ölerkennung) - Technologietransfer: Überführung zielführender Methoden des maschinellen Lernens in zentrale Dienste und Applikationen der BfG - Konsolidierung des Wissens: Initiierung einer BfG-weiten Arbeitsgruppe "KI" zwecks Beratung, Unterstützung, Austausch und Koordination zukünftiger Anwendungen mit Bezug zu Methoden der künstlichen Intelligenz Für die konkrete Anwendung der ML-Methoden für die Fach- und Beratungsaufgaben der BfG sollen - eine weitere Steigerung der Vorhersagegüte erzielt, längerfristige Vorhersageskalen erschlossen und innovative Beratungsprodukte generiert werden, - eine intelligente Vorbeurteilung von Öl-Verschmutzungen ermöglicht werden, die z. B. einen effizienteren Einsatz unbemannter Systeme ermöglicht und den teuren Datentransfer für weitfliegende Systeme wesentlich reduziert, - durch die Anwendung auf digitale Orthofotos eine Identifizierung von Vegetation mit erhöhtem Automatisierungsgrad auf großer Fläche ermöglicht werden, z. B. für eine effiziente Erstellung von Biotoptypenkartierungen und für ein stringentes Vegetationsmonitoring bei Entwicklungsmaßnahmen, - durch Kameraaufnahmen automatisch Makroplastik in fließenden Gewässern identifiziert und klassifiziert werden, - Messfehler von Bodenfeuchtemessungen identifiziert und korrigiert werden. Die vertiefte Befassung mit den Möglichkeiten und Grenzen von ML-Methoden soll die BfG unterstützen, um die rasant zunehmende Menge an (Umwelt-)Daten unter Nutzung steigender Rechenressourcen in eine verbesserte Leistungsfähigkeit ihres Beratungsangebots (z. B. für die WSV, das BMDV, das BMUV) zu überführen. Die Entwicklung von Anwendungsfeldern im Bereich der künstlichen Intelligenz (KI) ist ein zentrales Ziel der Bundesregierung (KI-Strategie für Deutschland), welches das BMDV für den Verkehrssektor in seinem Aktionsplan "Digitalisierung und Künstliche Intelligenz in der Mobilität" aufgegriffen und weiter konkretisiert hat. Pilothafte Anwendungen belegen aber neben dem hohen Bedarf auch das große Potenzial von Methoden des maschinellen Lernens im Bereich der Gewässerkunde (Prognose, Klassifikation, Regression). Im Rahmen von MALPROG wird die Nutzung KI- bzw. ML-basierter Methoden für konkrete Anwendungsfelder in der Gewässerkunde systematisch untersucht. Als zielführend identifizierte Ansätze werden in die praktische Facharbeit integriert, um letztlich deren Potenzial für konkrete Anwendungen in der Analyse- und Beratungspraxis der BfG und WSV ausschöpfen zu können.
Zum gegenwärtigen Stand von Wissenschaft und Technik bei der Planung und dem Betrieb von Verteilnetzen werden die zunehmenden Auswirkungen des Klimawandels auf die Versorgungsinfrastruktur bislang nur unzureichend berücksichtigt. Um den technischen, wirtschaftlichen und gesellschaftlichen Risiken, die sich aus den ansteigenden Umwelteinflüssen ergeben, in der Netzplanung und dem Netzbetrieb angemessen Rechnung zu tragen, ist eine Überprüfung der derzeitigen Planungs- und Betriebsgrundsätze und eine Anpassung an ihre zukünftigen Anforderungen dringend vonnöten. Im Fokus des Teilvorhabens der BUW steht daher die Ableitung zukunftsgerechter Grundsätze zur Planung und zum Betrieb von klimaresilienten Verteilnetzen. In Zusammenarbeit mit dem Projektkonsortium werden dabei zunächst die Auswirkungen des Klimawandels auf die Versorgungsinfrastrukturen analysiert und in Netzrisikokarten ausgewiesen. Anschließend wird der Nutzen verschiedener planerischer und betrieblicher Handlungsoptionen als Gegenmaßnahmen zu den Auswirkungen des Klimawandels evaluiert. Resultierende Handlungsempfehlungen werden abschließend in einem Leitfaden veröffentlicht, sodass auch nicht direkt am Projekt beteiligte Verteilnetzbetreiber ihre Planungs- und Betriebsgrundsätze hinreichend überarbeiten können.
Ziele Die Zielstellung des Projekts im Rahmen der Technologieoffensive Wasserstoff ist es, die bestehende alkalische Elektrolyse (AEL) in die nächste Generation zu überführen. Die nächste Generation der AEL - AWEC++ - lässt sich durch 4 Punkte definieren. I. Stabilität bei erhöhten Temperatur- und Druckbedingungen (180 Grad C, 35 bar), um höhere Stromdichten zu erreichen ( größer als 1000 mA cm 2). Dies führt zur Halbierung des CAPEX durch Steigerung der H2-Produktion bei konstanten Installationskosten. II. Ein Modernes Stack-Design, welches für hohe Leistungsklassen ( größer als 500 kW) skalierbar ist. Dessen Herzstück ist ein keramisches, plasmagespritztes MEA, sowie laminierte 3D-Gewebe-Elektroden und Laser- oder ECM-prozessierte Bipolarplatten. III. Dynamik in der Wasserstoff-Produktionsleistung, um den volatilen Erneuerbaren Energien ohne kostspielige Zwischenspeicher gerecht zu werden (500 ms). IV. Nachhaltige, automatisierungsfähige und skalierbare Herstellungs- und Prozessschritte, um größer als 150 GW an installierter Leistung langfristig umsetzen zu können. Stand der Wissenschaft und Technik In der alkalischen Elektrolyse wird Wasserstoff H2 an der Kathode und Sauerstoff O2 an der Anode aus Wasser erzeugt. Hydroxid-Ionen OH- wandern zwischen beiden durch ein Diaphragma in wässrigem Elektrolyt (35 % KOH). In der ursprünglichen Variante der alkalischen Elektrolyse (AEL) wurden an Metallplatten als Elektroden genutzt. In moderneren Verfahren sind sogenannte Zero-Gap-Anordnungen üblich, welche durch einen geringeren Elektrodenabstand ohmische Verluste verringern. Als Elektrodenmaterial werden aktuell überwiegend Nickellegierungen verwendet. Langjährige Erfahrung besitzt PACO im Bereich von Hoch- und Niedrigtemperatur-Brennstoffzellen. So entstanden abgestimmte Gewebe auf Nickel-Basis oder kostenoptimierte Spezialgewebe bei gleichbleibenden Eigenschaften in der Anwendung als 3D-Elektroden.
Wasserstoff soll ein zentrales Element der Energiewende werden. Die Künstliche Photosynthese bietet eine attraktive Möglichkeit, Wasserstoff klimaneutral aus Wasser und Sonnenlicht zu erzeugen. Trotz materialwissenschaftlicher Fortschritte wurde das Verfahren bislang nicht industriell umgesetzt. Eine Analyse des Standes von Wissenschaft und Technik zeigt, dass zentrale Hindernisse auf den Gebieten der Modultechnologie, Industriemesstechnik und Fertigungsverfahren liegen. Im Rahmen des vorliegenden Projektes soll eine Zelltechnologie, die sich durch hohe Effizienz und Stabilität auszeichnet, vom Laboraufbau zu einer Demonstrationsanlage weiterentwickelt werden (TRL 4 zu TRL 6) . Gleichzeitig soll die industrielle Fertigung vorbereitet werden. Das Projektziel ist ein Modul aus mehreren Elektroden mit einer solar-to-hydrogen-Effizienz von mindestens 10 % und einer aktiven Fläche von etwa 100 cm2 pro Elektrode bei mindestens 12 Elektroden pro Modul. Die Ziele der Arbeiten am Fraunhofer CSP sind die Weiterentwicklung eines Labor-Teststandes sowie die Entwicklung eines einsatzbereiten Freiluft-Messstands für die langfristige Untersuchung der Demonstrationsanlagen unter Anwendungsbedingungen.
Wasserstoff soll ein zentrales Element der Energiewende werden. Die Künstliche Photosynthese bietet eine attraktive Möglichkeit, Wasserstoff klimaneutral aus Wasser und Sonnenlicht zu erzeugen. Trotz materialwissenschaftlicher Fortschritte wurde das Verfahren bislang nicht industriell umgesetzt. Eine Analyse des Standes von Wissenschaft und Technik zeigt, dass zentrale Hindernisse auf den Gebieten der Modultechnologie, Industriemesstechnik und Fertigungsverfahren liegen. Im Rahmen des vorliegenden Projektes soll eine Zelltechnologie, die sich durch hohe Effizienz und Stabilität auszeichnet, vom Laboraufbau zu einer Demonstrationsanlage weiterentwickelt werden (TRL 4 zu TRL 6) . Gleichzeitig soll die industrielle Fertigung vorbereitet werden. Das Projektziel ist ein Modul aus mehreren Elektroden mit einer solar-to-hydrogen-Effizienz von mindestens 10 % und einer aktiven Fläche von etwa 100 cm2 pro Elektrode bei mindestens 12 Elektroden pro Modul. Die Ziele der Arbeiten am Fraunhofer CSP sind die Weiterentwicklung eines Labor-Teststandes sowie die Entwicklung eines einsatzbereiten Freiluft-Messstands für die langfristige Untersuchung der Demonstrationsanlagen unter Anwendungsbedingungen.
Im Vorhaben DaCoWind sollen schädigungsbasierte Regelungsverfahren für Windenergieanlagen erforscht werden. Damit soll es möglich sein, Windenergieanlagen in Betriebspunkten zu betreiben, die eine Netzstützung unter Berücksichtigung der strukturellen Integrität ermöglichen. Im Gegensatz zum Stand der Wissenschaft und Technik werden nicht nur Arbeitspunkte entsprechend der maximalen Leistungsausbeute betrachtet, sondern auch solche, die einen signifikanten Beitrag zur Stützung eines elektrischen Netzes, hauptsächlich bestehend aus erneuerbaren Energieerzeugern, beitragen können. Hierdurch wird die Adaptivität der Windenergieanlage in Bezug auf seine Umgebungsbedingungen erhöht. Hierzu zählen neben den natürlichen Bedingungen aus dem Wind bzw. auch aus dem Seegang im Offshore-Bereich, auch die augenblicklichen Eigenschaften des elektrischen Netzes. Mit einer adaptiven Regelung wird ein wesentlicher Beitrag zur Fusion heterogener Energieerzeuger zu einem homogenen Energiesystem geleistet. In den Teilvorhaben der Universität Rostock werden die theoretischen Grundlagen für das Vorhaben gelegt. Zum einen werden auf Basis der Bruchmechanik das Ermüdungsverhalten von Faserverbundwerkstoffen analysiert. Zum anderen wird ein echtzeitfähiges Prozessmodell für die Modellprädiktive Regelung entwickelt.
Origin | Count |
---|---|
Bund | 489 |
Land | 8 |
Type | Count |
---|---|
Förderprogramm | 231 |
Gesetzestext | 3 |
Text | 170 |
unbekannt | 93 |
License | Count |
---|---|
geschlossen | 243 |
offen | 254 |
Language | Count |
---|---|
Deutsch | 493 |
Englisch | 50 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 64 |
Keine | 329 |
Multimedia | 4 |
Unbekannt | 2 |
Webseite | 108 |
Topic | Count |
---|---|
Boden | 224 |
Lebewesen und Lebensräume | 232 |
Luft | 155 |
Mensch und Umwelt | 497 |
Wasser | 143 |
Weitere | 389 |