API src

Found 54 results.

Related terms

Bodenkarte von Niedersachsen 1 : 50 000 - Bodenkundliche Feuchtestufe - Frühjahrszahl (1991-2020) (WMS Dienst)

Die Karte zeigt die Frühjahrszahl der Bodenkundlichen Feuchtestufe für den 30-jährigen Zeitraum 1991-2020. Die Bodenkundlichen Feuchtestufe (BKF) ermöglicht eine Aussage über die Feuchtesituation von Standorten. Sie gibt Auskunft über die mögliche landwirtschaftliche Nutzung und über Nutzungseinschränkungen aufgrund von Trockenheit oder Feuchte. Die BKF berücksichtigt bodenkundliche, hydrologische, morphologische und klimatische Kennwerte. Für die Beurteilung der Feuchtesituation werden 12 Feuchtestufen (von dürr bis nass) unterschieden. Ermittelt werden je nach Bodentyp auch nach Jahreszeit getrennte Werte (Frühjahrszahl/Sommerzahl, z.B. 6/2). Unterschiede zwischen Frühjahrs- und Sommerzahl können z.B. bei stauwasserbeeinflussten Böden auftreten, die im Frühjahr deutlich feuchter als im Sommer sein. Die Frühjahreszahl beschreibt den Feuchtezustand eines Standortes, bei stauwasserbeeinflussten Böden den Zustand in den Frühjahresmonaten, wenn Stauwasser auftritt.

Bodenkarte von Niedersachsen 1 : 50 000 - Bodenkundliche Feuchtestufe - Frühjahrszahl (1991-2020) (WFS Dienst)

Die Karte zeigt die Frühjahrszahl der Bodenkundlichen Feuchtestufe für den 30-jährigen Zeitraum 1991-2020. Die Bodenkundlichen Feuchtestufe (BKF) ermöglicht eine Aussage über die Feuchtesituation von Standorten. Sie gibt Auskunft über die mögliche landwirtschaftliche Nutzung und über Nutzungseinschränkungen aufgrund von Trockenheit oder Feuchte. Die BKF berücksichtigt bodenkundliche, hydrologische, morphologische und klimatische Kennwerte. Für die Beurteilung der Feuchtesituation werden 12 Feuchtestufen (von dürr bis nass) unterschieden. Ermittelt werden je nach Bodentyp auch nach Jahreszeit getrennte Werte (Frühjahrszahl/Sommerzahl, z.B. 6/2). Unterschiede zwischen Frühjahrs- und Sommerzahl können z.B. bei stauwasserbeeinflussten Böden auftreten, die im Frühjahr deutlich feuchter als im Sommer sein. Die Frühjahreszahl beschreibt den Feuchtezustand eines Standortes, bei stauwasserbeeinflussten Böden den Zustand in den Frühjahresmonaten, wenn Stauwasser auftritt.

Bodenkarte von Niedersachsen 1 : 50 000 - Bodenkundliche Feuchtestufe - Frühjahrszahl (1991-2020)

Die Karte zeigt die Frühjahrszahl der Bodenkundlichen Feuchtestufe für den 30-jährigen Zeitraum 1991-2020. Die Bodenkundlichen Feuchtestufe (BKF) ermöglicht eine Aussage über die Feuchtesituation von Standorten. Sie gibt Auskunft über die mögliche landwirtschaftliche Nutzung und über Nutzungseinschränkungen aufgrund von Trockenheit oder Feuchte. Die BKF berücksichtigt bodenkundliche, hydrologische, morphologische und klimatische Kennwerte. Für die Beurteilung der Feuchtesituation werden 12 Feuchtestufen (von dürr bis nass) unterschieden. Ermittelt werden je nach Bodentyp auch nach Jahreszeit getrennte Werte (Frühjahrszahl/Sommerzahl, z.B. 6/2). Unterschiede zwischen Frühjahrs- und Sommerzahl können z.B. bei stauwasserbeeinflussten Böden auftreten, die im Frühjahr deutlich feuchter als im Sommer sein. Die Frühjahreszahl beschreibt den Feuchtezustand eines Standortes, bei stauwasserbeeinflussten Böden den Zustand in den Frühjahresmonaten, wenn Stauwasser auftritt.

Nitratrückhaltevermögen

Die Verlagerung von Nitrat mit dem Sickerwasser ist als ausschlaggebender Faktor einer Grundwassergefährdung anzusehen. Sie steigt mit der Sickerwasserrate, die sich vor allem aus dem jährlichen Wasserbilanzüberschuss ergibt und verringert sich mit der Verweildauer des Wassers im Boden sowie dem dadurch vermehrten Nitratentzug durch die Pflanzen. Die Verweildauer hängt vor allem von der Feldkapazität ab, die für den durchwurzelbaren Bodenraum ermittelt wird. Die Austragsgefährdung wird bei stauwasserbeeinflussten Standorten durch potenzielle Denitrifikation, längere Verweilzeit des Stauwassers im Wurzelraum (erhöhter Entzug durch die Pflanzen) und einen nicht quantifizierbaren seitlichen Nitrateintrag bzw. -austrag durch Interflow besonders beeinflusst. Durch Stauwasser beeinflusste Standorte werden deshalb gesondert gekennzeichnet. In tonreichen Böden, die zur Bildung von Trockenrissen neigen, kann es trotz hoher Feldkapazität bei Niederschlagsereignissen nach längeren Trockenzeiten zu einer Nitratverlagerung kommen. Derartige Böden (Pelosole, Terrae Fuscae) werden ebenfalls gekennzeichnet. Böden aus organogenen Substraten zeichnen sich grundsätzlich durch ein hohes Rückhaltevermögen aus. Aufgrund ihres erhöhten Mineralisationspotenzials ist aber eine Gefährdung des Grundwassers (z.B. nach einer Melioration) nicht auszuschließen. Diese Standorte sind ebenfalls gesondert gekennzeichnet. Das erhöhte Mineralisationspotenzial wird aber bei der Einstufung nicht berücksichtigt. Die Standorttypisierung erfolgt nach definierten Kriterien der Methodenbank des FIS Boden/Bodenschutz. Weitere Informationen zur Methodik und Bewertung sind auf Anfrage erhältlich. Je nach Ausgabezweck wird das Ergebnis als komplexe Karte mit überlagernden Teilthemen oder als einfache Klassifizierung dargestellt.

Nitratrückhaltevermögen

Die Verlagerung von Nitrat mit dem Sickerwasser ist als ausschlaggebender Faktor einer Grundwassergefährdung anzusehen. Sie steigt mit der Sickerwasserrate, die sich vor allem aus dem jährlichen Wasserbilanzüberschuss ergibt und verringert sich mit der Verweildauer des Wassers im Boden sowie dem dadurch vermehrten Nitratentzug durch die Pflanzen. Die Verweildauer hängt vor allem von der Feldkapazität ab, die für den durchwurzelbaren Bodenraum ermittelt wird. Die Austragsgefährdung wird bei stauwasserbeeinflussten Standorten durch potenzielle Denitrifikation, längere Verweilzeit des Stauwassers im Wurzelraum (erhöhter Entzug durch die Pflanzen) und einen nicht quantifizierbaren seitlichen Nitrateintrag bzw. -austrag durch Interflow besonders beeinflusst. Durch Stauwasser beeinflusste Standorte werden deshalb gesondert gekennzeichnet. In tonreichen Böden, die zur Bildung von Trockenrissen neigen, kann es trotz hoher Feldkapazität bei Niederschlagsereignissen nach längeren Trockenzeiten zu einer Nitratverlagerung kommen. Derartige Böden (Pelosole, Terrae Fuscae) werden ebenfalls gekennzeichnet. Böden aus organogenen Substraten zeichnen sich grundsätzlich durch ein hohes Rückhaltevermögen aus. Aufgrund ihres erhöhten Mineralisationspotenzials ist aber eine Gefährdung des Grundwassers (z.B. nach einer Melioration) nicht auszuschließen. Diese Standorte sind ebenfalls gesondert gekennzeichnet. Das erhöhte Mineralisationspotenzial wird aber bei der Einstufung nicht berücksichtigt. Die Standorttypisierung erfolgt nach definierten Kriterien der Methodenbank des FIS Boden/Bodenschutz. Weitere Informationen zur Methodik und Bewertung sind auf Anfrage erhältlich. Je nach Ausgabezweck wird das Ergebnis als komplexe Karte mit überlagernden Teilthemen oder als einfache Klassifizierung dargestellt.

Bodenempfindlichkeit: Empfindlichkeit bei Bewässerungen

Andererseits können Grundwasseranstau- bzw. Bewässerungsmaßnahmen zur Vernässung von staunässeempfindlichen und natürlicherweise trockenen, terrestrischen Böden führen. Die Bodenfunktionen sind durch das Fehlen bzw. das Vorhandensein von Grund- und Stauwasser und durch ein sehr geringes Wasserspeichervermögen geprägt. Folglich reagieren natürlicherweise trockene Böden empfindlich auf Vernässung.

Verdunstungspotential Boden

Die Verdunstungspotentialkarte wurde im Jahr 2021 durch die Bodenkühlleistungskarte Hamburg abgelöst und vollständig ersetzt. Nach Einführung der Bodenkühlleistungskarte darf die Verdunstungspotentialkarte nicht weiter genutzt werden. Im Vergleich mit der Verdunstungspotentialkarte basiert die Bodenkühlleistungskarte nicht nur auf aktuelleren sowie verbesserten Datengrundlagen, sondern auch auf einer modifizierten konzeptionellen Herangehensweise bei der Kartenentwicklung. Verdunstungspotentialkarte Stand 2011 Die Karte zeigt Gebiete in denen infolge geringen Flurabstands des ersten Grundwasserleiters oder infolge von Stauwasser eine hohe Ausprägung der Verdunstungsleistung der Böden und damit eine hohe Klimarelevanz bezogen auf das Stadtklima gegeben ist. Maßstab 1 : 25 000

Wasser-KW-gross-BR-2000

grosses Laufwasserkraftwerk in Brasilien inkl. THG-Emissionen! Es werden nur grosse Wasserkraftwerke („large-dams") mit geringer Stauhöhe und großen Wasservolumina am Beispiel der Amazonas-Staudämme betrachtet. Die Daten gelten für tropische Regionen von Südamerika (Brasilien-Amazonas, Venezuela) und Afrika. Es wird unterstellt, dass die Wasserkraftwerke ausschließlich zur Stromerzeugung dienen. #1 stellt ein Modell zur zeitabhängigen Bilanzierung von CO2 und Methan-Emissionen aus dem Stauwasser von Wasserkraftwerken in Amazonien vor. Voraussetzungen für die Modellbildung sind dabei die Randbedingungen: 1. Die überflutete Wasserfläche ist größtenteils mit Regenwald bestanden (428 t/ha). Geringe Freiflächen (ca. 10%) werden vernachlässigt, da die überflutete Wasserfläche selber nur mit einer vergleichbaren Genauigkeit bestimmt werden kann. 2. Die überflutete Wasserfläche kann in einen immer überfluteten Anteil mit anaeroben Zersetzungsbedingungen und eine aeroben Anteil unterteilt werden. 3. Aus der Biomasse in den anaeroben Zonen wird Methan (Fall c) mit einer geringer Rate gebildet (500 Jahre). Die Produktion von Methan kann daher als nahezu konstant betrachtet werden. 4. Die Biomasse in aeroben Zonen wird in kurzer Zeit (10 Jahre) zu CO2 umgesetzt. Es ergibt sich ein deutlicher Abfall der CO2- Emissionen innerhalb der ersten 10 Jahre. 5. Methan wird zusätzlich über Macrophytenwachstum (Fall b) und Zerfall sowie durch Methanbildung aus zugeführter Biomasse (Fall a) durch die neu geschaffene Wasserfläche/Wasservolumen erzeugt. Fearnside bezieht Besonderheiten der betrachteten Wasserkraftwerke im Amazonasbecken wie ausgeräumte Waldfläche vor und nach dem Stauen, Unterteilung des Stausees in ständig wie nur säsonal-überflutete Regionen mit ein. Aus dem Ergebnis wird allerdings deutlich, daß die daraus erwachsenen Unterschiede zwischen den vier Wasserkraftwerken vernachlässigbar sind. In erster Näherung zeigt damit sein Modell nur eine Abhängigkeit von der Wasseroberfläche. Aus den untersuchten Wasserkraftwerken können folgende spezifischen Emissionen abgeleitet werden: Emissionen Einheit Größe Methan aus a- Wasserfläche jährlich g/m2 20 b- Macrophyten jährlich g/m2 5,5 c- anaerober Abbau jährlich g/m2 20 Summe Methan jährlich g/m2 45,5 CO2 aus aeroben Abbau insgesamt kg/m2 51 CO2 aus aeroben Abbau50 Jahre Betriebszeit jährlich kg/m2 1,03 Aus dem aeroben Abbau der Biomasse wird innerhalb von ca. 10 Jahren Kohlendioxid freigesetzt. Die insgesamt freigesetzte Menge wird über eine Betriebszeit von 50 Jahren gemittelt. Für große Wasserkraftwerke in Canada hat Rudd (#2) die jährlichen Methanemissionen aus überflutetem Land mit 7,7 g/m2 und die jährlichen CO2-Emissionen zu ca. 200 g/m2 aus Messungen abgeschätzt. Die Unterschiede in beiden Arbeiten resultieren aus dem Biomasse-Inventar, welches angesetzt worden ist. Rudd nimmt ein Inventar von 4,8 kg C/m2 oder ca 10 kg/m2 Biomasse an während Fearnside mit einem aktivem Biomasse-Inventar von 14 kg C/m2 rechnet. Die Unterschiede zwischen beiden Abschätzungen hinsichtlich der Biomasse scheinen gerechtfertigt zu sein. Für die hier diskutierten tropischen Staudämme soll mit dem Modell von Fearnside (#1) gerechnet werden. Die überflutete Landfläche des Staudammes ist eine gut dokumentierte Größe von Großstaudämmen. Es zeigt sich jedoch, daß deutliche Unterschiede zwischen den einzelnen Staudämmen existieren. Balbina Tucuri Samuel gewichtetesMittel KapazitätMW 250 4000 200 Größe km2 3147 2247 465 Leistung GWh 970 18030 776 Fläche/Leistung m2/kWh 3,2 0,125 0,599 0,296 Methan-Emiss. g/kWh 148 5,7 27,3 13,5 CO2-Emiss. kg/kWh 3,34 0,13 0,62 0,31 Für Staudämme im Amazonas wird ein Emissionsfaktor von 13,5 g Methan/kWh und 310 g CO2/kWh angenommen und auf andere tropische Staudämme übertragen. Auslastung: 6000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 1250000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 50a Leistung: 50MW Nutzungsgrad: 100% Produkt: Elektrizität

Wasser-KW-CO-2010

Tropische Wasserkraftwerke inkl. THG-Emissionen! Es werden nur große Wasserkraftwerke („large-dams") mit geringer Stauhöhe und großen Wasservolumina am Beispiel der Amazonas-Staudämme betrachtet. Die Daten gelten für tropische Regionen von Südamerika (Brasilien-Amazonas, Venezuela) und Afrika. Es wird unterstellt, daß die Wasserkraftwerke ausschließlich zur Stromerzeugung dienen. Fearnside (Fearnside 1995) stellt ein Modell zur zeitabhängigen Bilanzierung von CO2 und Methan-Emissionen aus dem Stauwasser von Wasserkraftwerken in Amazonien vor. Voraussetzungen für die Modellbildung sind dabei die Randbedingungen: 1. Die überflutete Wasserfläche ist größtenteils mit Regenwald bestanden (428 t/ha). Geringe Freiflächen (ca. 10%) werden vernachlässigt, da die überflutete Wasserfläche selber nur mit einer vergleichbaren Genauigkeit bestimmt werden kann. 2. Die überflutete Wasserfläche kann in einen immer überfluteten Anteil mit anaeroben Zersetzungsbedingungen und eine aeroben Anteil unterteilt werden. 3. Aus der Biomasse in den anaeroben Zonen wird Methan (Fall c) mit einer geringer Rate gebildet (500 Jahre). Die Produktion von Methan kann daher als nahezu konstant betrachtet werden. 4. Die Biomasse in aeroben Zonen wird in kurzer Zeit (10 Jahre) zu CO2 umgesetzt. Es ergibt sich ein deutlicher Abfall der CO2- Emissionen innerhalb der ersten 10 Jahre. 5. Methan wird zusätzlich über Macrophytenwachstum (Fall b) und Zerfall sowie durch Methanbildung aus zugeführter Biomasse (Fall a) durch die neu geschaffene Wasserfläche/Wasservolumen erzeugt. Fearnside bezieht Besonderheiten der betrachteten Wasserkraftwerke im Amazonasbecken wie ausgeräumte Waldfläche vor und nach dem Stauen, Unterteilung des Stausees in ständig wie nur säsonal-überflutete Regionen mit ein. Aus dem Ergebnis wird allerdings deutlich, daß die daraus erwachsenen Unterschiede zwischen den vier Wasserkraftwerken vernachlässigbar sind. In erster Näherung zeigt damit sein Modell nur eine Abhängigkeit von der Wasseroberfläche. Aus den untersuchten Wasserkraftwerken können folgende spezifischen Emissionen abgeleitet werden: Emissionen Einheit Größe Methan aus a- Wasserfläche jährlich g/m2 20 b- Macrophyten jährlich g/m2 5,5 c- anaerober Abbau jährlich g/m2 20 Summe Methan jährlich g/m2 45,5 CO2 aus aeroben Abbau insgesamt kg/m2 51 CO2 aus aeroben Abbau50 Jahre Betriebszeit jährlich kg/m2 1,03 Aus dem aeroben Abbau der Biomasse wird innerhalb von ca. 10 Jahren Kohlendioxid freigesetzt. Die insgesamt freigesetzte Menge wird über eine Betriebszeit von 50 Jahren gemittelt. Für große Wasserkraftwerke in Canada hat Rudd (Rudd 1993) die jährlichen Methanemissionen aus überflutetem Land mit 7,7 g/m2 und die jährlichen Kohlendioxid-Emissionen zu ca. 200 g/m2 aus Messungen abgeschätzt. Die Unterschiede in beiden Arbeiten resultieren aus dem Biomasse-Inventar, welches angesetzt worden ist. Rudd nimmt ein Inventar von 4,8 kg C/m2 oder ca 10 kg/m2 Biomasse an während Fearnside mit einem aktivem Biomasse-Inventar von 14 kg C/m2 rechnet. Die Unterschiede zwischen beiden Abschätzungen hinsichtlich der Biomasse scheinen gerechtfertigt zu sein. Für die hier diskutierten tropischen Staudämme soll mit dem Modell von Fearnside gerechnet werden. Die überflutete Landfläche des Staudammes ist eine gut dokumentierte Größe von Großstaudämmen. Es zeigt sich jedoch, daß deutliche Unterschiede zwischen den einzelnen Staudämmen existieren. Balbina Tucuri Samuel gewichtetesMittel KapazitätMW 250 4000 200 Größe km2 3147 2247 465 Leistung GWh 970 18030 776 Fläche/Leistung m2/kWh 3,2 0,125 0,599 0,296 Methan-Emiss. g/kWh 148 5,7 27,3 13,5 CO2-Emiss. kg/kWh 3,34 0,13 0,62 0,31 Für Staudämme im Amazonas wird ein Emissionsfaktor von 13,5 g Methan/kWh und 310 g CO2/kWh angenommen und auf andere tropische Staudämme übertragen. Auslastung: 4000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 600000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 30a Leistung: 1000MW Nutzungsgrad: 100% Produkt: Elektrizität

Wasser-KW-Tropen-2000

Tropische Wasserkraftwerke inkl. THG-Emissionen! Es werden nur große Wasserkraftwerke („large-dams") mit geringer Stauhöhe und großen Wasservolumina am Beispiel der Amazonas-Staudämme betrachtet. Die Daten gelten für tropische Regionen von Südamerika (Brasilien-Amazonas, Venezuela) und Afrika. Es wird unterstellt, daß die Wasserkraftwerke ausschließlich zur Stromerzeugung dienen. Fearnside (Fearnside 1995) stellt ein Modell zur zeitabhängigen Bilanzierung von CO2 und Methan-Emissionen aus dem Stauwasser von Wasserkraftwerken in Amazonien vor. Voraussetzungen für die Modellbildung sind dabei die Randbedingungen: 1. Die überflutete Wasserfläche ist größtenteils mit Regenwald bestanden (428 t/ha). Geringe Freiflächen (ca. 10%) werden vernachlässigt, da die überflutete Wasserfläche selber nur mit einer vergleichbaren Genauigkeit bestimmt werden kann. 2. Die überflutete Wasserfläche kann in einen immer überfluteten Anteil mit anaeroben Zersetzungsbedingungen und eine aeroben Anteil unterteilt werden. 3. Aus der Biomasse in den anaeroben Zonen wird Methan (Fall c) mit einer geringer Rate gebildet (500 Jahre). Die Produktion von Methan kann daher als nahezu konstant betrachtet werden. 4. Die Biomasse in aeroben Zonen wird in kurzer Zeit (10 Jahre) zu CO2 umgesetzt. Es ergibt sich ein deutlicher Abfall der CO2- Emissionen innerhalb der ersten 10 Jahre. 5. Methan wird zusätzlich über Macrophytenwachstum (Fall b) und Zerfall sowie durch Methanbildung aus zugeführter Biomasse (Fall a) durch die neu geschaffene Wasserfläche/Wasservolumen erzeugt. Fearnside bezieht Besonderheiten der betrachteten Wasserkraftwerke im Amazonasbecken wie ausgeräumte Waldfläche vor und nach dem Stauen, Unterteilung des Stausees in ständig wie nur säsonal-überflutete Regionen mit ein. Aus dem Ergebnis wird allerdings deutlich, daß die daraus erwachsenen Unterschiede zwischen den vier Wasserkraftwerken vernachlässigbar sind. In erster Näherung zeigt damit sein Modell nur eine Abhängigkeit von der Wasseroberfläche. Aus den untersuchten Wasserkraftwerken können folgende spezifischen Emissionen abgeleitet werden: Emissionen Einheit Größe Methan aus a- Wasserfläche jährlich g/m2 20 b- Macrophyten jährlich g/m2 5,5 c- anaerober Abbau jährlich g/m2 20 Summe Methan jährlich g/m2 45,5 CO2 aus aeroben Abbau insgesamt kg/m2 51 CO2 aus aeroben Abbau50 Jahre Betriebszeit jährlich kg/m2 1,03 Aus dem aeroben Abbau der Biomasse wird innerhalb von ca. 10 Jahren Kohlendioxid freigesetzt. Die insgesamt freigesetzte Menge wird über eine Betriebszeit von 50 Jahren gemittelt. Für große Wasserkraftwerke in Canada hat Rudd (Rudd 1993) die jährlichen Methanemissionen aus überflutetem Land mit 7,7 g/m2 und die jährlichen Kohlendioxid-Emissionen zu ca. 200 g/m2 aus Messungen abgeschätzt. Die Unterschiede in beiden Arbeiten resultieren aus dem Biomasse-Inventar, welches angesetzt worden ist. Rudd nimmt ein Inventar von 4,8 kg C/m2 oder ca 10 kg/m2 Biomasse an während Fearnside mit einem aktivem Biomasse-Inventar von 14 kg C/m2 rechnet. Die Unterschiede zwischen beiden Abschätzungen hinsichtlich der Biomasse scheinen gerechtfertigt zu sein. Für die hier diskutierten tropischen Staudämme soll mit dem Modell von Fearnside gerechnet werden. Die überflutete Landfläche des Staudammes ist eine gut dokumentierte Größe von Großstaudämmen. Es zeigt sich jedoch, daß deutliche Unterschiede zwischen den einzelnen Staudämmen existieren. Balbina Tucuri Samuel gewichtetesMittel KapazitätMW 250 4000 200 Größe km2 3147 2247 465 Leistung GWh 970 18030 776 Fläche/Leistung m2/kWh 3,2 0,125 0,599 0,296 Methan-Emiss. g/kWh 148 5,7 27,3 13,5 CO2-Emiss. kg/kWh 3,34 0,13 0,62 0,31 Für Staudämme im Amazonas wird ein Emissionsfaktor von 13,5 g Methan/kWh und 310 g CO2/kWh angenommen und auf andere tropische Staudämme übertragen. Auslastung: 4000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 600000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 30a Leistung: 1000MW Nutzungsgrad: 100% Produkt: Elektrizität

1 2 3 4 5 6