API src

Found 50 results.

Related terms

Glas und Altglas

Glas und Altglas Altglas kann unendlich oft wieder eingeschmolzen und zur Herstellung neuer Glasprodukte genutzt werden. Solch eine erneute stoffliche Nutzung ist umweltverträglich und kann viel Energie (ca. 10 %) und viele Rohstoffe einsparen, wenn die verschiedenen Glasprodukte wie Flaschen und Fenstergläser an ihrem Lebensende dem richtigen Entsorgungsweg zugeführt werden. Massenprodukt Glas In Deutschland stellten Glashersteller 2023 rund 6,883 Millionen Tonnen (Mio. t) Glas her. Aus 3,928 Mio. t davon wurde Behälterglas gefertigt, aus 1,938 Mio. t Flachglas. Aus rund 332.300 Tonnen (t) entstanden spezielle Gläser für Haushalte, Forschung und Wirtschaft. Der folgende Text beschreibt die Sammlung und Verwertung dieser Gläser. Zusätzlich gibt es Produzenten von Mineralwollen, die rund 685.200 t Glas- und Steinwolle herstellen, die als Dämmmaterial eingesetzt wurden (siehe Abb. „Glasproduktion im Jahr 2023 und die Anteile der einzelnen Glasbranchen“). Glas: gut recycelbar! Glas lässt sich unendlich oft wieder verwenden. Es kann beliebig oft in den Schmelzprozess zurückgeführt und zu neuen Produkten verarbeitet werden. Da recyceltes Glas bei niedrigeren Temperaturen als die zur Glasherstellung erforderlichen Rohstoffe schmilzt, sinkt der Energiebedarf, wenn Glasscherben zugesetzt werden. Über den Daumen lässt sich sagen, dass der Energiebedarf um etwa 0,2 bis 0,3 % sinkt, wird ein Prozent Altglas dem Schmelzofen hinzugefügt. Einschmelzen von Altglas schützt so das ⁠ Klima ⁠ und spart Rohstoffe wie Quarzsand, Soda und Kalk ein. Das trägt ebenfalls zur Verringerung der dem Herstellungsprozess anrechenbaren Umweltbelastungen bei. Weiterhin braucht eingeschmolzenes Altglas nicht deponiert zu werden. Glashersteller setzen Scherben, die als Ausschuss bei der Produktion anfallen, wieder ein. Der Einsatz von Altglas hängt aber von den herstellungsspezifischen Anforderungen an den Reinheitsgrad der Scherben ab. So kann gefärbtes Glas nicht zur Herstellung von Weißglas genutzt werden und Keramikscherben oder Steine stören den Produktionsprozess. Im Jahr 2015 haben Behälterglashersteller in Glaswannen durchschnittlich 60 % Scherben eingesetzt, bei Grünglas sogar bis zu 90 %. Altglassammlung mit Tradition Für Behälterglas wurde bereits im Jahr 1974 ein flächendeckendes Sammelsystem eingerichtet. Meist werden Bringcontainersysteme zur getrennten Erfassung von Weiß-, Braun- und Grünglas eingesetzt. Über 250.000 solcher Altglascontainer sind bundesweit im Einsatz. Die Aufbereitung des gesammelten Behälterglases erfolgt zwar weitestgehend vollautomatisch. Die Farbsortierung erfordert jedoch aus technischen und ökonomischen Gründen eine nach Farben getrennte Sammlung der Glasbehälter. So ist die Sortenreinheit der gesammelten Glasmengen eine Voraussetzung für die Rückführung von Behälterglasscherben in den Schmelzprozess zur Herstellung neuer Flaschen und Gläser. Im Jahr 2006 erreichte die Behälterglasverwertung eine Quote von 83,6 %. Bis zu diesem Jahr hat die Gesellschaft für Glasrecycling und Abfallvermeidung mbH (GGA) die entsprechenden Daten zur Verfügung gestellt. Nach dem kartellrechtlichen Verbot dieser Organisation fehlen verlässliche Daten über das Aufkommen von Behälterglasscherben. Zahlen müssen nunmehr aus den entsprechenden Abfallstatistiken sowie den jährlichen Erhebungen zum Aufkommen und zur Verwertung von Verpackungsabfällen in Deutschland (siehe auch „Verpackungsabfälle“ ) entnommen werden. Diese Veröffentlichung weist für das Jahr 2021 eine Verwertungsquote von 80,3 % für auf den Markt gebrachte Behältergläser aus (siehe Abb. „Verwertung von Glas aus gebrauchten Verpackungen“). Dieser Wert liegt gut 4% unter dem Vorjahreswert, was aber nicht auf einer schlechteren Verwertung beruht, sondern auf einer Änderung der gesetzlich vorgeschriebenen Berechnungsmethode. Generell ist eine Vorsortierung beim Verbraucher unbedingt erforderlich. Fensterglas, Autoglas, Kristallglas und feuerfeste Gläser wie Laborglas, Ceran®, Pyrex® lassen sich bei der Altglasaufbereitung nur schwer aussortieren und können zu hohen Produktionsausfällen oder zur Anreicherung von Schwermetallen im Behälterglaskreislauf führen, zum Beispiel durch Bleikristallglasscherben. Deshalb dürfen diese Gläser nicht in Altglasbehältern entsorgt werden. Stoffliche Verwertung von Behälterglas In der Behälterglasindustrie stellt Altglas mittlerweile die wichtigste Rohstoffkomponente dar. Eine Tonne Altglas darf jedoch nicht mehr als 25 g an Keramik, Steinen und Porzellan (KSP-Fraktion) enthalten und maximal 5 g an Nichteisenmetallen wie Aluminium. Zudem sind Grenzwerte für Eisenmetalle und für organische Bestandteile wie Kunststoffe und Papier zu unterschreiten. Besonders wichtig ist die Farbreinheit der Altglasscherben. Um weißes Behälterglas herzustellen, ist bei einer Altglasscherbenzugabe von 50 % eine Farbreinheit von 99,7 % erforderlich. Der Fehlfarbenanteil im Braunglas darf die 8 %-Marke nicht überschreiten. Lediglich grünes Glas lässt einen Fehlfarbenanteil von bis zu 15 % zu. Stoffliche Verwertung von Flachglas Für Flachglasprodukte wie Fensterglas und andere Baugläser gelten besondere Qualitätsanforderungen wie Farbreinheit und Blasenfreiheit. Die Flachglasindustrie setzt daher überwiegend sortenreine Glasscherben aus weiterverarbeitenden Betrieben und Eigenscherben ein. In den letzten Jahren wurden die Sammelsysteme zur Erfassung möglichst sortenreiner und fremdstoffarmer Flachglasprodukte im weiterverarbeitenden Gewerbe ausgebaut. Altglas, das nicht den vorgegebenen Anforderungen an den Reinheitsgrad entspricht, muss aufbereitet werden. Hierfür stehen in Deutschland derzeit zehn Aufbereitungsanlagen zur Verfügung. Altglasfraktionen, die sich aus Qualitätsgründen nicht für die Herstellung neuer Flachgläser eignen, können in geringem Umfang bei der Herstellung von Behälterglas eingesetzt werden, aber auch bei der Herstellung von Dämmwolle, Schmirgelpapier, Schaumglas und Glasbausteinen. Autoscheiben werden geschreddert Demontagebetriebe für Altfahrzeuge müssen Front-, Heck- und Seitenscheiben sowie Glasdächer von Altfahrzeugen ausbauen und dem Recycling zuführen. Das schreibt die Altfahrzeugverordnung vor (siehe "Altfahrzeugverwertung und Fahrzeugverbleib" ).Im Jahr 2022 nahmen die deutschen Altfahrzeug-Demontagebetriebe 296.422 Altfahrzeuge zur Behandlung an. Sie enthielten im Schnitt etwa 35 kg Fahrzeugglas je Altfahrzeug, insgesamt rund 10.400 t. Aufgrund behördlicher Ausnahmen von der Demontagepflicht haben die Altfahrzeugverwerter nach Angaben des Statistischen Bundesamtes (öffentlich verfügbare Werte auf 100 t gerundet) davon nur etwa 7 % – also 779 t – demontiert. Der überwiegende Anteil der Fahrzeugscheiben und Glasdächer gelangt mit den Altfahrzeugen in Schredderanlagen. Die dabei anfallenden nichtmetallischen mineralischen Rückstände wurden im Jahr 2022 überwiegend verwertet, etwa als Bergversatz oder im Deponiebau, und teilweise beseitigt. Über die Ersatzverglasung, also den Anfall von Fahrzeugglas durch Scheibenwechsel, liegt eine grobe Schätzung für das Jahr 2020 vor: In Markenwerkstätten wurden in Deutschland schätzungsweise rund 1,7 Millionen Verbundglasscheiben ersetzt. Geht man von einem durchschnittlichen Gewicht einer Windschutzscheibe von knapp 10 kg aus, so bedeutet dies einen Anfall von etwa 16.000 t an Verbundsicherheitsglas (VSG). Hinzu kommt noch eine unbekannte Menge aus der Ersatzverglasung aus weiteren Werkstätten. Etwa 90 % der Altgläser aus der Ersatzverglasung werden einer Verwertung zugeführt.

Überarbeitung der Emissionsfaktoren für Luftschadstoffe in den Branchen Zementklinkerproduktion und Glasherstellung

Die Hüttentechnische Vereinigung der deutschen Glasindustrie e. V. mit Sitz in Offenbach am Main betreibt seit über 40 Jahren Emissionsmessungen im Bereich der Glasindustrie in Deutschland. Zur Bereitstellung der Emissionsfaktoren in der deutschen Glasindustrie, die aufgearbeitet und der Öffentlichkeit zur Verfügung gestellt werden konnten, lagen somit handfeste Messwerte vor. In diesem Bericht wird die Glasherstellung auf sieben Glassparten aufgeteilt: Behälterglas, Flachglas, Wirtschaftsglas, Spezialglas, Glasfasern und Glaswolle, Mineral- und Steinwolle sowie Wasserglas. Zeitlich aufgeteilte Emissionsdarstellungen gewähren somit einen Blick auf die Entwicklung der Emissionen in der Glasindustrie. Zusätzlich wurden zu den errechneten Emissionsfaktoren, die auf tatsächlichen Messungen basieren, Unsicherheiten erarbeitet. Diese sollen die möglichen Abweichungen vom nicht zu ermittelnden tatsächlichen Wert aufzeigen und basieren auf Schätzungen. Die Messtätigkeiten der Hüttentechnischen Vereinigung der Deutschen Glasindustrie decken nicht die gesamte Anzahl an Glasherstellern ab. Deshalb beinhaltet dieser Bericht ein Expertenvotum für ausgewählte Emissionsfaktoren: Eine Einschätzung auf Grundlage von internen und externen Messdaten und Erfahrungen unseres Vereins in Anbetracht der umwelttechnischen Entwicklungen im Bereich der Glasindustrie, um ein möglichst reales Emissionsbild für jede der genannten Glassparten zu liefern. Quelle: Forschungsbericht

Generalplan Küsten- und Hochwasserschutz Mecklenburg-Vorpommern

Zusammenstellung der Planungsvorhaben sowie der vorhandenen Küstenschutzbauwerke. Einordnung des Küsten- und Hochwasserschutzes in M-V. Geomorphologische Verhältnisse und hydrodynamische Situation.

Steine-Erden\Steinwolle-DE-2020

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Steine-Erden\Steinwolle-DE-2010

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Steine-Erden\Steinwolle-DE-2030

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Steine-Erden\Steinwolle-DE-2050

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Steine-Erden\Steinwolle-DE-2005

Herstellung von Steinwolle: das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Steine-Erden\Steinwolle-DE-2015

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Steine-Erden\Steinwolle-DE-2000

Herstellung von Steinwolle; das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit sauerstoff-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS 3.0 kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

1 2 3 4 5