Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
Zielsetzung Im Mittelpunkt des Projektes stehen zum einen die Anliegen und Herausforderungen der österreichischen LandwirtInnen, zum anderen der nötige Handlungsbedarf in den Bereichen Grundwasserschutz, Luftreinhaltung und Sozialverträglichkeit in Zusammenhang mit der Gülleverbringung. So gliedern sich die Ziele des Projektes wie folgt: - Verringerung der Grundwasserbelastung als Folge der Wirtschaftsdüngerausbringung - Verringerung der Feinstaub- und Geruchsbelastung als Folge der Ammoniakabgasung - Ermöglichung einer zeitlich flexiblen und pflanzenbaulich angepassten Düngung - Entlastung der LandwirtInnen durch die Verringerung von Arbeitsspitzen durch die Wirtschaftsdüngerausbringung - Reduktion der Notwendigkeit zur Errichtung von zusätzlichen Lagerkapazitäten - Entlastung der Bodenstruktur und des Bodenlebens durch geteilte Düngergaben - Verbesserung der Sozialverträglichkeit durch Reduktion der Geruchsemissionen während der Gülleausbringung - Schaffung einer langfristigen Alternative zur betrieblichen Existenzsicherung und betriebswirtschaftlichen Entlastung auf landwirtschaftlicher Ebene - Aufbereitung der Ergebnisse und gezielte regionale und globale Verbreitung Aktuell sind in Österreich 94 % der gesamten Ammoniakemissionen der Landwirtschaft zuzuschreiben, wobei davon allein etwa 50 % auf die Ausbringung von Wirtschaftsdünger fallen. Daneben ist das österreichische Grundwasser an einigen Hotspots durch die Folgen der landwirtschaftlichen Düngung mehr oder minder stark belastet. Es müssen dringend Lösungen gefunden werden, um nicht nur die Auflagen der NEC-Richtlinie und der NAP-Verordnung zu erfüllen, sondern auch den Forderungen der Gesellschaft nach einer sozialverträglicheren Landwirtschaft nachzugehen. Das Projekt 'Ammosafe' hat zum Ziel, Ammoniumstickstoff aus Gülle zu entfernen und daraus einen eigenen Dünger herzustellen. Damit soll die landwirtschaftliche Verbringung von Gülle zeitlich flexibler, sowie durch die Reduktion unerwünschter Emissionen in die Luft (Ammoniak, Lachgas) und in Gewässer (Nitrat) umweltschonender, bodenschonender und sozial verträglicher werden. So erfüllt das Projekt vorrangig die Vorgaben des Leitthemas 1 beziehungsweise des Schwerpunktbereichs 4b der strategischen Ziele in LE 2020. Daneben werden auch noch Zielsetzungen weiterer Leitthemen beziehungsweise strategischer Ziele in LE 2020 erfüllt: Der im Zuge der Aufbereitung gewonnene Flüssigdünger (Ammoniumsulfat) kann je nach Bedarf entweder in der Umgebung verkauft oder gezielt an die jeweilige Kulturart angepasst auf dem eigenen Betrieb eingesetzt werden. So eröffnet sich für die LandwirtInnen die Möglichkeit, nachhaltig den Zukauf von Düngemitteln einzusparen. Damit ermöglicht diese Vorgehensweise auch die im Leitthema 2 und im Schwerpunktbereich 5b angesprochene effizientere stoffliche Ressourcennutzung des Betriebsmittels Gülle. (Text gekürzt)
Das Modell MoRE wurde auf die Jahre um 1880 angewandt, um die mittleren historischen Emissionen, Frachten und Konzentrationen von Stickstoff und Phosphor für Flusseinzugsgebiete, die in die deutsche Nord- und Ostsee einleiten, zu quantifizieren. Die historische Wasserbilanz wurde mit dem Modell LARSIM-ME abgeleitet und in MoRE integriert. Die Modellergebnisse ergänzen die historischen Modellergebnisse, die den bestehenden deutschen Zielkonzentrationen für Stickstoff am so genannten Übergabepunkt limnisch-marin und Schwellenwerten für den guten ökologischen Zustand der Küsten- und Meeresgewässer zugrunde liegen. Die Datensatzdatei enthält die Geometrie der 3048 Modellierungseinheiten in den Einzugsgebieten von Nord- und Ostsee (mit Ausnahme des Stettiner Haffs und des Einzugsgebiets der oberen Donau) und eine lange Datentabelle mit den Modelloutputs und ausgewählten Inputdaten (47 Variablen, Spalten durch Tabstopps getrennt).
<p>Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss</p><p>Stickstoff ist ein essenzieller Nährstoff für alle Lebewesen. Im Übermaß in die Umwelt eingebrachter Stickstoff führt aber zu enormen Belastungen von Ökosystemen.</p><p>Stickstoffüberschuss der Landwirtschaft</p><p>Eine Maßzahl für die Stickstoffeinträge in Grundwasser, Oberflächengewässer, Böden und die Luft aus der Landwirtschaft ist der aus der landwirtschaftlichen Stickstoff-Gesamtbilanz ermittelte Stickstoffüberschuss (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“).</p><p>Die Stickstoff-Gesamtbilanz setzt sich zusammen aus den Komponenten Flächenbilanz (Bilanzierung der Pflanzen- bzw. Bodenproduktion), Stallbilanz (Bilanzierung der tierischen Erzeugung) und der Biogasbilanz (Bilanzierung der Erzeugung von Biogas in landwirtschaftlichen Biogasanlagen). Der Stickstoffüberschuss der Gesamtbilanz ergibt sich aus der Differenz von Stickstoffzufuhr in und Stickstoffabfuhr aus dem gesamten Sektor Landwirtschaft (siehe Schaubild „Schema der Stickstoff-Gesamtbilanz der Landwirtschaft“). Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> wird vom Institut für Pflanzenbau und Bodenkunde des Julius Kühn-Instituts und dem Umweltbundesamt berechnet und jährlich vom <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMEL#alphabar">BMEL</a> veröffentlicht (siehe<a href="https://www.bmel-statistik.de/fileadmin/daten/0111260-0000.xlsx">BMEL, Tabellen zur Landwirtschaft, MBT-0111-260-0000</a>).</p><p>Der Stickstoffüberschuss der Gesamtbilanz ist als mittlerer Überschuss aller landwirtschaftlicher Betriebe in Deutschland zu interpretieren. Regional können sich die Überschüsse jedoch sehr stark unterscheiden. Grund dafür sind vorrangig unterschiedliche Viehbesatzdichten und daraus resultierende Differenzen beim Anfall von Wirtschaftsdünger. Um durch <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> und Düngerpreis verursachte jährliche Schwankungen auszugleichen wird ein gleitendes 5-Jahresmittel errechnet.</p><p>___<br>* jährlicher Überschuss bezogen auf das mittlere Jahr des 5-Jahres-Zeitraums (aus gerundeten Jahreswerten berechnet)** 1990: Daten zum Teil unsicher, nur eingeschränkt vergleichbar mit Folgejahren.*** Ziel der Nachhaltigkeitsstrategie der Bundesregierung, bezogen auf das 5-Jahres-Mittel, d.h. auf den Zeitraum 2028 bis 2032Bundesministerium für Ernährung und Landwirtschaft (BMEL) 2024, Statistischer Monatsbericht Kap. A Nährstoffbilanzen und Düngemittel, Nährstoffbilanz insgesamt von 1990 bis 2022 (MBT-0111260-0000)Die Ergebnisse der Bilanzierung zeigen einen abnehmenden Trend bei den Stickstoffüberschüssen über die erfasste Zeitreihe (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Im Zeitraum 1992 bis 2020 ist der Stickstoffüberschuss im gleitenden 5-Jahresmittel von 117 Kilogramm Stickstoff pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a) auf 77 kg N/ha*a gesunken. Das entspricht einem jährlichen Rückgang von 1 % sowie einem Rückgang über die Zeit um 34 %. Die Reduktion des Stickstoffüberschusses zu Beginn der 1990er Jahre ist größtenteils auf den Abbau der Tierbestände in den neuen Bundesländern zurückzuführen. Der durchschnittliche Rückgang des Stickstoffüberschusses über die gesamte Zeit von 1992 bis 2020 beruht auf Effizienzgewinnen bei der Stickstoffnutzung (Effizienterer Einsatz von Stickstoff-Düngemitteln, Ertragssteigerungen in der Pflanzenproduktion und höhere Futterverwertung bei Nutztieren). In den Jahren seit 2015 ist der Überschuss besonders stark gesunken. Grund dafür sind neben einer veränderten und wirksameren Gesetzgebung, gesunkene Tierzahlen sowie Dürrejahre und höhere Mineraldüngerpreise und der damit einhergehende verminderte Einsatz von Mineraldüngern.Im Jahr 2016 wurde in derDeutschen Nachhaltigkeitsstrategieder Bundesregierung (BReg 2016) ein Zielwert von 70 kg N/ha*a für das gleitende 5-Jahresmittel von 2028-2032 verankert. Von 2016 bis 2020, also in 4 Jahren, wurde somit bereits etwa dreiviertel der angestrebten Reduktion erreicht.Bewertung der EntwicklungWenn die Stickstoffüberschüsse weiterhin so schnell sinken wie in den letzten Jahren bzw. auf dem aktuellen Niveau bleiben wird das Ziel der Deutschen Nachhaltigkeitsstrategie voraussichtlich in den nächsten zwei bis drei Jahren erreicht werden. Für einen umfassenden Schutz von Umwelt und Klima ist dies aber noch nicht ausreichend. Die in 2016 in Kraft getretene EU-Richtlinie über nationale Emissionshöchstmengen für bestimmte Luftschadstoffe (NEC-Richtlinie) verpflichtet Deutschland bis 2030 dazu 29 % der Ammoniak-Emissionen im Vergleich zum Jahr 2005 zu reduzieren. Bis zum Jahr 2022 wurde hier nur eine Minderung von 18 % erreicht. Da der Sektor Landwirtschaft der größte Verursacher von Ammoniak-Emissionen ist, sind hier also noch weitere Maßnahmen für die Zielerreichung nötig. Aber auch für das Erreichen von weiteren Zielen, wie Nitrat im Grundwasser, Stickstoffeintrag über die Zuflüsse in Nord- und Ostsee und Eutrophierung der Ökosysteme wird voraussichtlich das Erreichen des 70 kg-Ziels nicht ausreichen, denn hier kommt es weniger auf den durchschnittlichen nationalen Stickstoffüberschuss, sondern eher auf die regionale Verteilung der Stickstoffüberschüsse an. Einen Überblick über die Verteilung der Überschüsse finden Siehier.Stickstoffzufuhr und Stickstoffabfuhr in der LandwirtschaftDie Stickstoffzufuhr zur landwirtschaftlichen Gesamtbilanz berücksichtigt Mineraldünger, Wirtschaftsdüngerimporte, Kompost und Klärschlamm, atmosphärische Stickstoffdeposition, Stickstoffbindung von Leguminosen, Co-Substrate für die Bioenergieproduktion sowie Futtermittelimporte. Die Stickstoffabfuhr berücksichtigt pflanzliche und tierische Marktprodukte. Im Durchschnitt lag die Stickstoffzufuhr zwischen 1990 und 2022 bei 187 Kilogramm pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a), mit einem Maximum von 209 kg N/ha*a im Jahr 1990 und einem Minimum von 151 kg N/ha*a im Jahr 2022. Die Zufuhr hat sich bis 2017 kaum verändert. Lediglich in den letzten 5 Jahren gab es einen mittleren Rückgang von 8 kg N/ha*a. Die Stickstoffabfuhr betrug im gesamten Betrachtungszeitraum durchschnittlich 87 kg N/ha*a, mit einem Maximum von 103 kg N/ha*a im Jahr 2014 und einem Minimum von 67 kg N/ha*a im Jahr 1990. Im gleitenden 5-Jahresmittel stieg die Abfuhr von 73 kg N/ha*a im Jahr 1992 auf 88 kg N/ha*a im Jahr 2020 an. Dies entspricht einem Anstieg des über tierische und pflanzliche Produkte abgefahrenen Stickstoffs von etwa 21 %.2022 stammten 44 % der Stickstoffzufuhr der Landwirtschaft aus Mineraldüngern, 25 % aus inländischem Tierfutter sowie 14 % aus Futtermittelimporten. Wirtschaftsdünger und betriebseigene Futtermittel werden in der Flächenbilanz, nicht aber in der Gesamtbilanz berücksichtigt. 3 % des Stickstoffs wurden über den Luftpfad eingetragen (Deposition aus Verkehrsabgasen und Verbrennungsanlagen) und 2 % stammte aus Kofermenten für die Biogasproduktion. 10 % sind der biologischen Stickstofffixierung von Leguminosen (zum Beispiel Klee oder Erbsen) anzurechnen, die Luftstickstoff in erheblichem Maße binden. Etwa 1 % der Stickstoffzufuhr stammte aus Saat- und Pflanzgut.Die Stickstoffabfuhr fand zu 32 % über Fleisch, Schlachtabfälle und sonstige Tierprodukte und zu 68 % über pflanzliche Marktprodukte statt.Umweltwirkungen der StickstoffüberschüsseÜberschüssiger Stickstoff aus landwirtschaftlichen Quellen gelangt als Nitrat in Grund- und Oberflächengewässer und als Ammoniak und Lachgas in die Luft. Lachgas trägt als hochwirksames Treibhausgas zur Klimaerwärmung bei. Der Eintrag von Nitrat und Ammoniak in Land- oder Wasser-Ökosysteme kann weitreichende Auswirkungen auf den Naturhaushalt haben. Diese sind unter anderemIm Mittel der Jahre 2012 bis 2016 wurden rund 480 Kilotonnen Stickstoff pro Jahr in die deutschen Oberflächengewässer eingetragen (siehe„Einträge von Nähr- und Schadstoffen in die Oberflächengewässer“). Durchschnittlich stammten in diesem Zeitraum 74 % dieser Einträge aus landwirtschaftlich genutzten Flächen.Die DüngeverordnungDieDüngeverordnungdefiniert „die gute fachliche Praxis der Düngung“ und gibt vor, wie die mit der Düngung verbundenen Risiken zu minimieren sind. Sie ist wesentlicher Bestandteil des nationalen Aktionsprogramms zur Umsetzung derEU-Nitratrichtlinie. Nach der Düngeverordnung dürfen Landwirtinnen und Landwirte Pflanzen nur entsprechend ihres Nährstoffbedarfs düngen. Die Düngeverordnung wurde 2017 und 2020 novelliert um Strafzahlungen als Folge des Urteils des EuGHs gegen Deutschland wegen Verletzung der EU-Nitratrichtlinie zu verhindern. Dieses Ziel wurde vorerst erreicht. Die kurzfristige Wirkung der Maßnahmen der novellierten Düngeverordnung werden aktuell im Rahmen eines Effizienzmonitorings geprüft, um die mit Nitrat belasteten und von Eutrophierung betroffenen Gebiete zu identifizieren und eine schnelle Nachsteuerung von Maßnahmen in diesen Gebieten zu erreichen. Informationen zu den Novellierungen finden Siehier.Weitere Maßnahmen zur Verringerung der ÜberschüsseUm das Ziel der Bundesregierung zum Stickstoffüberschuss und der damit untrennbar verbundenen Umweltziele zu Nitrat im Grundwasser, Eutrophierung von Ökosystemen sowie Oberflächengewässern und zu Emissionen von Luftschadstoffen zu erreichen, muss die Gesamtstickstoffzufuhr in der Landwirtschaft verringert und der eingesetzte Stickstoff effizienter genutzt werden. Die Voraussetzung dafür ist das Schließen des Stickstoffkreislaufs. Dafür müssen Maßnahmen umgesetzt werden, die dazu führen, dass die Anwendung von Mineraldünger reduziert wird, importierte Futtermittel durch heimische ersetzt werden und die Anzahl von Nutztieren reduziert wird. Zudem muss die Effizienz der Stickstoffnutzung durch weitere Optimierungen des betrieblichen Nährstoffmanagements, wie standortangepasste Bewirtschaftungsmaßnahmen, geeignete Nutzpflanzensorten und passende, vielfältige Fruchtfolgen verbessert werden. Dabei ist am Ende nicht nur die Verringerung der durchschnittlichen Überschüsse entscheidend, sondern auch die Verteilung der Nährstoffe in die Fläche, denn nur so können die genannten Umweltziele erreicht werden. Um diese Verteilung zu erreichen müssen große Tierbestände reduziert und die Tiere gleichmäßiger auf die gesamte landwirtschaftliche Fläche verteilt werden.
Die bioplusLNG GmbH, Röthenbachtal 1, 90552 Röthenbach a. d. Pegnitz, hat am 28.07.2023 beim Landratsamt Nürnberger Land, SG 21.1 Untere Immissionsschutzbehörde, die Erteilung einer Teilgenehmigung gem. § 8 BImSchG zur Errichtung einer Anlage zur Verflüssigung von im angeschlossenen Ferngasnetz enthaltenen Gas zur Bereitstellung als sog. BioLNG im Transportsektor (Teilgenehmigung 1) auf Fl.Nrn. 447/5 und 447/6, Gemarkung Röthenbach a. d. Pegnitz sowie damit zusammenhängend die Zulassung des vorzeitigen Beginns gem. § 8a BImSchG für einen Teil der Maßnahmen beantragt. Die Anlage dient der Verflüssigung von Gas aus dem überörtlichen Ferngasnetz. Kernstück des beantragten Vorhabens ist der zur Verflüssigung des Gases bei kryogener Temperatur vorgesehene Anlagenteil mit einem geschlossenen Recycling-Stickstoffkreislauf. Als Kältemittel wird Stickstoff eingesetzt. Das aus dem bestehenden Ferngasnetz entnommene und in der Anlage verflüssigte Gas wird in Tanks gelagert und nachfolgend zum Weitertransport in LKW abgefüllt. Die Durchsatzkapazität der Anlage beträgt bis zu 150 Tonnen pro Tag. Die Antragstellerin hat gemäß § 7 Abs. 3 UVPG die Durchführung einer Umweltverträglichkeitsprüfung (UVP) anstelle einer Vorprüfung der Umweltverträglichkeit des Vorhabens beantragt. Das Landratsamt Nürnberger Land hat dem Antrag stattgegeben und als zuständige Genehmigungsbehörde die Pflicht zur Durchführung einer UVP festgestellt. Die Entscheidung ist gem. § 7 Abs. 3 Satz 3 UVPG nicht anfechtbar. Die Antragstellerin hat begleitend zu den oben genannten Anträgen einen UVP-Bericht vorgelegt. Im Zusammenhang mit dem immissionsschutzrechtlichen Zulassungsantrag und dem UVP-Bericht wurden Gutachten für die Bereiche Lärmschutz, Luftreinhaltung, Boden, Störfallrecht und Anlagensicherheit vorgelegt. Es wurde zudem ein Antrag auf Erteilung der wasserrechtliche Erlaubnis gem. §§8, 10 WHG zur Versickerung von Niederschlagswasser gestellt, hierfür wird ein gesondertes wasserrechtliches Verfahren geführt.
Recently, the application of biochar to soils has been discussed as a win-win-win strategy to improve soil fertility, sequester carbon, reduce greenhouse gas (GHG) emissions, and to enable CO2-negative energy production from renewable feedstock. First results suggest that biochar application affects the N transformations in the soil - The interactions between biochar and soil N transformations are still poorly understood. The aim of this project is to quantify the simultaneously occurring gross N transformations and sources of N2O fluxes in soils after biochar application. The methodology developed by C. Müller and established at the Department of Plant Ecology (15N labeling-tracing-modeling) (2-5) will be used to investigate the effect of biochar on soil N dynamics. Three 15N-tracing studies will be conducted to evaluate the short-term, intermediate and longer-term effects of biochar on N dynamics: (1) a study using 15N-labelled biochars (adapt technique for biochar); (2) a study examining intermediateterm effects in a biochar-hydrochar field study that started in April 2011 at the Dept. of Plant Ecology, and (3) a study in an European field experiment where fully randomized biochar plots were installed in 2009. The study is designed in such a way that Bachelor- and Master studies will address certain aspects in support of the main study. A process-based understanding of the soil N dynamics is key to evaluate if biochar may be a suitable global-change mitigation tool.
To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.
Die Messstelle Neunaigen (Messstellen-Nr: 2147, Bayern) dient der Überwachung des Grundwasserstands im oberen Grundwasserstockwerk, des biologischen Zustands, des chemischen Zustands.
Origin | Count |
---|---|
Bund | 2731 |
Europa | 5 |
Kommune | 34 |
Land | 1941 |
Schutzgebiete | 5 |
Wirtschaft | 9 |
Wissenschaft | 136 |
Zivilgesellschaft | 20 |
Type | Count |
---|---|
Chemische Verbindung | 57 |
Daten und Messstellen | 1745 |
Ereignis | 5 |
Förderprogramm | 2236 |
Taxon | 54 |
Text | 258 |
Umweltprüfung | 16 |
unbekannt | 311 |
License | Count |
---|---|
geschlossen | 434 |
offen | 4146 |
unbekannt | 48 |
Language | Count |
---|---|
Deutsch | 4149 |
Englisch | 820 |
Resource type | Count |
---|---|
Archiv | 1603 |
Bild | 15 |
Datei | 342 |
Dokument | 238 |
Keine | 2044 |
Multimedia | 2 |
Unbekannt | 7 |
Webdienst | 11 |
Webseite | 2173 |
Topic | Count |
---|---|
Boden | 3844 |
Lebewesen und Lebensräume | 4232 |
Luft | 3506 |
Mensch und Umwelt | 4628 |
Wasser | 3959 |
Weitere | 4488 |