API src

Found 325 results.

Related terms

Nachhaltiger Winterrapsanbau durch züchterische Verbesserung der NUE und Optimierung des Anbausystems, Teilprojekt B

Das Ziel des Projektes besteht darin, ausgehend von genomisch selektierten, stickstoffeffizienteren Winterrapshybriden in einem mehrstufigen Ansatz optimierte Anbauverfahren zu entwickeln, die bei deutlich niedrigerer Stickstoffzufuhr höhere und stabile Rapserträge und geringere N-Bilanzüberschüsse realisieren. Das Projekt verfolgt die Hypothesen, dass sowohl durch die Einzelfaktoren i) Genotyp, ii) Düngerform und iii) Saattechnik, aber insbesondere durch eine abgestimmte Kombination der genannten Faktoren, Einfluss auf die Reduktion der N-Bilanzüberschüsse bei gleichem oder sogar höherem Ertrag genommen werden kann. Daher sollen im Projekt NaWiRa nährstoffeffizientere Winterrapshybriden identifiziert und die Wechselwirkung zwischen Hybriden, der Stickstoffdüngung und einer optimierten Standraumverteilung durch Gleichstandsaat untersucht werden. Die Analyse dieser vielschichtigen Wechselwirkungen soll Antworten auf die Frage geben, wie genomische Selektion, Stickstoffdüngerapplikation und Saattechnik aufeinander abzustimmen sind, um eine bestmögliche Nutzung des Stickstoffdüngers zu erzielen und dadurch die Nachhaltigkeit des Winterrapsanbaus zu verbessern. Dies soll den Startpunkt für neue, zukunftsweisende Anbausysteme im Winterraps darstellen. Ausgehend von den hier gewonnenen Erkenntnissen zur Optimierung der Genotyp-Düngung-Saattechnik-Interkationen soll der Weg für z.B. eine GPS-gesteuerte mechanische Unkrautkontrolle geebnet und darüber hinaus die Entwicklung in Richtung Spot-Farming vorangetrieben werden. Letzteres soll perspektivisch durch eine georeferenzierte Positionierung der Pflanzen eine pflanzenspezifische robotergesteuerte Düngerapplikation erlauben.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Quantifizierung, Modellierung und Regionalisierung der Phosphor-Verluste mit dem Sickerwasser aus Waldböden

Steigende Biomasseentzüge aus Wäldern, erhöhtes Waldwachstum durch anhaltend hohe atmosphärische Stickstoffeinträge und direkte und indirekte Auswirkungen des Klimawandels rücken den Kreislauf und die Verfügbarkeit von Phosphor (P) in Waldökosystemen vermehrt in den Fokus wissenschaftlicher Untersuchungen. Den P-Verlusten mit dem Sickerwasser kommt dabei außerdem besondere Bedeutung für die Eutrophierung von Oberflächengewässern zu. Bisher liegen jedoch kaum Erkenntnisse über die Höhe und Prozessdynamik des P-Austrags und die Transportwege von P in Waldböden vor. Eigene Studien zeigten kürzlich, dass signifikante P-Verluste aus Waldböden während starker Niederschlagsereignisse auftreten können. Da der Oberflächenabfluss in Wälder in der Regel vernachlässigbar ist, spielt insbesondere der Transport über preferentielle Fließwege (z.B. Makroporen) eine wichtige Rolle. Welche Prozesse jedoch den P-Transport entlang dieser Fließwege steuern und welche P-Formen überwiegend transportiert werden, ist weitestgehend unbekannt. Ebenso wurde bisher nicht untersucht, ob unterschiedliche Ernährungsstrategien von Waldökosystemen einen Effekt auf die P-Transportmechanismen haben. Eine Grundannahme des SPP 1685 ist, dass recycelnde Systeme, in denen die P- Verfügbarkeit aus der mineralischen Phase gering ist, sich an diese P-Limitierung angepasst haben. Sie können Phosphor hoch effizient recyceln und P-Verluste aus dem System minimieren. Dagegen bestand für akquirierende Systeme, welche überwiegend verfügbares P der mineralischen Phase nutzen, vermutlich nicht die Notwendigkeit angepasste Strategien zu einem effizienten P-Recycling zu entwickeln. Um die Relevanz dieser beiden hypothetischen Ernährungsstrategien auf P-Transportprozesse in Waldböden experimentell zu überprüfen, werden wir daher Böden in Waldökosystemen mit unterschiedlicher P-Verfügbarkeit aus der mineralischen Phase betrachten (SPP-Kernstandorte). Die Ziele unserer Studie sind dabei: 1) die Identifizierung der P-Transportpfade durch den Boden und der am Transport beteiligten P-Formen; 2) die modell-basierte Abschätzung der P-Verluste aus den betrachteten Systemen. Die preferentiellen Fließwege von infiltrierendem Wasser sollen mit Hilfe von Farbtracer-Experimenten visualisiert werden. Durch die anschließende chemische Analyse der P-Fraktionen in den preferentiellen Fließwegen sollen Rückschlüsse auf P-Transportmechanismen in Waldböden gezogen werden. Zur Abschätzung der P-Verluste aus dem System werden basierend auf den identifizierten Transportmechanismen und beobachteten Fließwegen numerische Modelle parametrisiert, welche die Komponenten des Wasserhaushaltes simulieren. Durch diesen kombinierten Ansatz können erstmals die Transportmechanismen und Austragsraten von Phosphor aus Waldökosystemen in Abhängigkeit ihrer Ernährungsstrategie (P-Verfügbarkeit aus der mineralischen Phase) vergleichend betrachtet werden.

Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss

<p>Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss</p><p>Stickstoff ist ein essenzieller Nährstoff für alle Lebewesen. Im Übermaß in die Umwelt eingebrachter Stickstoff führt aber zu enormen Belastungen von Ökosystemen.</p><p>Stickstoffüberschuss der Landwirtschaft</p><p>Eine Maßzahl für die Stickstoffeinträge in Grundwasser, Oberflächengewässer, Böden und die Luft aus der Landwirtschaft ist der aus der landwirtschaftlichen Stickstoff-Gesamtbilanz ermittelte Stickstoffüberschuss (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“).</p><p>Die Stickstoff-Gesamtbilanz setzt sich zusammen aus den Komponenten Flächenbilanz (Bilanzierung der Pflanzen- bzw. Bodenproduktion), Stallbilanz (Bilanzierung der tierischen Erzeugung) und der Biogasbilanz (Bilanzierung der Erzeugung von Biogas in landwirtschaftlichen Biogasanlagen). Der Stickstoffüberschuss der Gesamtbilanz ergibt sich aus der Differenz von Stickstoffzufuhr in und Stickstoffabfuhr aus dem gesamten Sektor Landwirtschaft (siehe Schaubild „Schema der Stickstoff-Gesamtbilanz der Landwirtschaft“). Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ wird vom Institut für Pflanzenbau und Bodenkunde des Julius Kühn-Instituts und dem Umweltbundesamt berechnet und jährlich vom ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMEL#alphabar">BMEL</a>⁠ veröffentlicht (siehe<a href="https://www.bmel-statistik.de/fileadmin/daten/0111260-0000.xlsx">BMEL, Tabellen zur Landwirtschaft, MBT-0111-260-0000</a>).</p><p>Der Stickstoffüberschuss der Gesamtbilanz ist als mittlerer Überschuss aller landwirtschaftlicher Betriebe in Deutschland zu interpretieren. Regional können sich die Überschüsse jedoch sehr stark unterscheiden. Grund dafür sind vorrangig unterschiedliche Viehbesatzdichten und daraus resultierende Differenzen beim Anfall von Wirtschaftsdünger. Um durch ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ und Düngerpreis verursachte jährliche Schwankungen auszugleichen wird ein gleitendes 5-Jahresmittel errechnet.</p><p>___<br>* jährlicher Überschuss bezogen auf das mittlere Jahr des 5-Jahres-Zeitraums (aus gerundeten Jahreswerten berechnet)** 1990: Daten zum Teil unsicher, nur eingeschränkt vergleichbar mit Folgejahren.*** Ziel der Nachhaltigkeitsstrategie der Bundesregierung, bezogen auf das 5-Jahres-Mittel, d.h. auf den Zeitraum 2028 bis 2032Bundesministerium für Ernährung und Landwirtschaft (BMEL) 2024, Statistischer Monatsbericht Kap. A Nährstoffbilanzen und Düngemittel, Nährstoffbilanz insgesamt von 1990 bis 2022 (MBT-0111260-0000)Die Ergebnisse der Bilanzierung zeigen einen abnehmenden Trend bei den Stickstoffüberschüssen über die erfasste Zeitreihe (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Im Zeitraum 1992 bis 2020 ist der Stickstoffüberschuss im gleitenden 5-Jahresmittel von 117 Kilogramm Stickstoff pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a) auf 77 kg N/ha*a gesunken. Das entspricht einem jährlichen Rückgang von 1 % sowie einem Rückgang über die Zeit um 34 %. Die Reduktion des Stickstoffüberschusses zu Beginn der 1990er Jahre ist größtenteils auf den Abbau der Tierbestände in den neuen Bundesländern zurückzuführen. Der durchschnittliche Rückgang des Stickstoffüberschusses über die gesamte Zeit von 1992 bis 2020 beruht auf Effizienzgewinnen bei der Stickstoffnutzung (Effizienterer Einsatz von Stickstoff-Düngemitteln, Ertragssteigerungen in der Pflanzenproduktion und höhere Futterverwertung bei Nutztieren). In den Jahren seit 2015 ist der Überschuss besonders stark gesunken. Grund dafür sind neben einer veränderten und wirksameren Gesetzgebung, gesunkene Tierzahlen sowie Dürrejahre und höhere Mineraldüngerpreise und der damit einhergehende verminderte Einsatz von Mineraldüngern.Im Jahr 2016 wurde in derDeutschen Nachhaltigkeitsstrategieder Bundesregierung (BReg 2016) ein Zielwert von 70 kg N/ha*a für das gleitende 5-Jahresmittel von 2028-2032 verankert. Von 2016 bis 2020, also in 4 Jahren, wurde somit bereits etwa dreiviertel der angestrebten Reduktion erreicht.Bewertung der EntwicklungWenn die Stickstoffüberschüsse weiterhin so schnell sinken wie in den letzten Jahren bzw. auf dem aktuellen Niveau bleiben wird das Ziel der Deutschen Nachhaltigkeitsstrategie voraussichtlich in den nächsten zwei bis drei Jahren erreicht werden. Für einen umfassenden Schutz von Umwelt und ⁠Klima⁠ ist dies aber noch nicht ausreichend. Die in 2016 in Kraft getretene EU-Richtlinie über nationale Emissionshöchstmengen für bestimmte Luftschadstoffe (⁠NEC-Richtlinie⁠) verpflichtet Deutschland bis 2030 dazu 29 % der Ammoniak-Emissionen im Vergleich zum Jahr 2005 zu reduzieren. Bis zum Jahr 2022 wurde hier nur eine Minderung von 18 % erreicht. Da der Sektor Landwirtschaft der größte Verursacher von Ammoniak-Emissionen ist, sind hier also noch weitere Maßnahmen für die Zielerreichung nötig. Aber auch für das Erreichen von weiteren Zielen, wie Nitrat im Grundwasser, Stickstoffeintrag über die Zuflüsse in Nord- und Ostsee und ⁠Eutrophierung⁠ der Ökosysteme wird voraussichtlich das Erreichen des 70 kg-Ziels nicht ausreichen, denn hier kommt es weniger auf den durchschnittlichen nationalen Stickstoffüberschuss, sondern eher auf die regionale Verteilung der Stickstoffüberschüsse an. Einen Überblick über die Verteilung der Überschüsse finden Siehier.Stickstoffzufuhr und Stickstoffabfuhr in der LandwirtschaftDie Stickstoffzufuhr zur landwirtschaftlichen Gesamtbilanz berücksichtigt Mineraldünger, Wirtschaftsdüngerimporte, Kompost und Klärschlamm, atmosphärische Stickstoffdeposition, Stickstoffbindung von Leguminosen, Co-Substrate für die Bioenergieproduktion sowie Futtermittelimporte. Die Stickstoffabfuhr berücksichtigt pflanzliche und tierische Marktprodukte. Im Durchschnitt lag die Stickstoffzufuhr zwischen 1990 und 2022 bei 187 Kilogramm pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a), mit einem Maximum von 209 kg N/ha*a im Jahr 1990 und einem Minimum von 151 kg N/ha*a im Jahr 2022. Die Zufuhr hat sich bis 2017 kaum verändert. Lediglich in den letzten 5 Jahren gab es einen mittleren Rückgang von 8 kg N/ha*a. Die Stickstoffabfuhr betrug im gesamten Betrachtungszeitraum durchschnittlich 87 kg N/ha*a, mit einem Maximum von 103 kg N/ha*a im Jahr 2014 und einem Minimum von 67 kg N/ha*a im Jahr 1990. Im gleitenden 5-Jahresmittel stieg die Abfuhr von 73 kg N/ha*a im Jahr 1992 auf 88 kg N/ha*a im Jahr 2020 an. Dies entspricht einem Anstieg des über tierische und pflanzliche Produkte abgefahrenen Stickstoffs von etwa 21 %.2022 stammten 44 % der Stickstoffzufuhr der Landwirtschaft aus Mineraldüngern, 25 % aus inländischem Tierfutter sowie 14 % aus Futtermittelimporten. Wirtschaftsdünger und betriebseigene Futtermittel werden in der Flächenbilanz, nicht aber in der Gesamtbilanz berücksichtigt. 3 % des Stickstoffs wurden über den Luftpfad eingetragen (⁠Deposition⁠ aus Verkehrsabgasen und Verbrennungsanlagen) und 2 % stammte aus Kofermenten für die Biogasproduktion. 10 % sind der biologischen Stickstofffixierung von Leguminosen (zum Beispiel Klee oder Erbsen) anzurechnen, die Luftstickstoff in erheblichem Maße binden. Etwa 1 % der Stickstoffzufuhr stammte aus Saat- und Pflanzgut.Die Stickstoffabfuhr fand zu 32 % über Fleisch, Schlachtabfälle und sonstige Tierprodukte und zu 68 % über pflanzliche Marktprodukte statt.Umweltwirkungen der StickstoffüberschüsseÜberschüssiger Stickstoff aus landwirtschaftlichen Quellen gelangt als Nitrat in Grund- und Oberflächengewässer und als Ammoniak und Lachgas in die Luft. Lachgas trägt als hochwirksames ⁠Treibhausgas⁠ zur Klimaerwärmung bei. Der Eintrag von Nitrat und Ammoniak in Land- oder Wasser-Ökosysteme kann weitreichende Auswirkungen auf den Naturhaushalt haben. Diese sind unter anderemIm Mittel der Jahre 2012 bis 2016 wurden rund 480 Kilotonnen Stickstoff pro Jahr in die deutschen Oberflächengewässer eingetragen (siehe„Einträge von Nähr- und Schadstoffen in die Oberflächengewässer“). Durchschnittlich stammten in diesem Zeitraum 74 % dieser Einträge aus landwirtschaftlich genutzten Flächen.Die DüngeverordnungDieDüngeverordnungdefiniert „die gute fachliche Praxis der Düngung“ und gibt vor, wie die mit der Düngung verbundenen Risiken zu minimieren sind. Sie ist wesentlicher Bestandteil des nationalen Aktionsprogramms zur Umsetzung derEU-Nitratrichtlinie. Nach der Düngeverordnung dürfen Landwirtinnen und Landwirte Pflanzen nur entsprechend ihres Nährstoffbedarfs düngen. Die Düngeverordnung wurde 2017 und 2020 novelliert um Strafzahlungen als Folge des Urteils des EuGHs gegen Deutschland wegen Verletzung der EU-Nitratrichtlinie zu verhindern. Dieses Ziel wurde vorerst erreicht. Die kurzfristige Wirkung der Maßnahmen der novellierten Düngeverordnung werden aktuell im Rahmen eines Effizienzmonitorings geprüft, um die mit Nitrat belasteten und von ⁠Eutrophierung⁠ betroffenen Gebiete zu identifizieren und eine schnelle Nachsteuerung von Maßnahmen in diesen Gebieten zu erreichen. Informationen zu den Novellierungen finden Siehier.Weitere Maßnahmen zur Verringerung der ÜberschüsseUm das Ziel der Bundesregierung zum Stickstoffüberschuss und der damit untrennbar verbundenen Umweltziele zu Nitrat im Grundwasser, ⁠Eutrophierung⁠ von Ökosystemen sowie Oberflächengewässern und zu Emissionen von Luftschadstoffen zu erreichen, muss die Gesamtstickstoffzufuhr in der Landwirtschaft verringert und der eingesetzte Stickstoff effizienter genutzt werden. Die Voraussetzung dafür ist das Schließen des Stickstoffkreislaufs. Dafür müssen Maßnahmen umgesetzt werden, die dazu führen, dass die Anwendung von Mineraldünger reduziert wird, importierte Futtermittel durch heimische ersetzt werden und die Anzahl von Nutztieren reduziert wird. Zudem muss die Effizienz der Stickstoffnutzung durch weitere Optimierungen des betrieblichen Nährstoffmanagements, wie standortangepasste Bewirtschaftungsmaßnahmen, geeignete Nutzpflanzensorten und passende, vielfältige Fruchtfolgen verbessert werden. Dabei ist am Ende nicht nur die Verringerung der durchschnittlichen Überschüsse entscheidend, sondern auch die Verteilung der Nährstoffe in die Fläche, denn nur so können die genannten Umweltziele erreicht werden. Um diese Verteilung zu erreichen müssen große Tierbestände reduziert und die Tiere gleichmäßiger auf die gesamte landwirtschaftliche Fläche verteilt werden.

Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)

Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.

Critical Levels und Critical Loads Baden-Württemberg 2020, Teil CL1: Methoden- und Datengrundlagen der Stickstoffanleitung

Das Kernvorhaben zur Umsetzung des ersten Forschungswettbewerbs in StickstoffBW konkretisiert die Simple-Mass-Balance Methode und entwickelt eine Fachkonvention für die behördliche Festsetzung von Critical Level und Critical Loads (CL). Die Ergebnisse sollen die in 2014 veröffentlichte 'CL-Datenmappe' ablösen. Im Einzelnen sollen die Forschenden 1. eine Anleitung zur Ermittlung der Critical Levels und Critical Loads orientierend mit Karten und abschließend mit Anleitung (Ing. Regioplus Mainz) einschließlich 2. einer Kartieranleitung zur Differenzierung der Biotoptypen nach Empfindlichkeit gegenüber Stickstoffeinträgen (Breunig Karlsruhe) und 3. einer Analyse der historischen Grünlandnutzung als Orientierungshilfe für die Definition von Trophiezonen für den Viehbesatz und die Düngungsintensität erarbeiten (Ing. Hohenheim).

Entwicklung des Eintrages von Nitrat, Nitrit und Ammonium unter sandigen landwirtschaftlichen Nutzflächen - Langzeitstudie Landkreis Gifhorn

Im Projekt erfolgt eine Langzeitbeobachtung des Eintrages von Nitrat, Nitrit und Ammonium in das sich unter landwirtschaftlichen Nutzflächen befindliche Grundwasser. Dazu werden im Landkreis Gifhorn seit 1989 ausgewählte Beregnungsbrunnen beprobt. Diese Erhebungen werden ergänzt durch eine Auswertung der beim Gesundheitsamt des Landkreises Gifhorn vorliegenden Daten zur Trinkwasserüberwachung. Herangezogen werden auch die Grundwasser-Überwachungsdaten aus den im Landkreis Gifhorn verbreitet anzutreffenden Trinkwasserschutzgebieten. Mit dem Projekt soll insbesondere der Fragestellung nachgegangen werden, in wieweit bei Böden mit hohem Nährstoffauswaschungspotential Stickstoffeinträge langfristig in immer tiefere Grundwasserbereiche verlagert werden. Da aus tieferen Grundwasserleitern in der Regel auch die öffentliche Trinkwasserversorgung gespeist wird, ist diese Fragestellung von besonderer Relevanz. Wegen des Vorhandenseins vielfach sandiger Böden in Kombination mit verbreitet intensiver Landwirtschaft und mit einer i.d.R. auf den landwirtschaftlichen Nutzflächen gegebenen Grundwasserneubildung, kann im Landkreis Gifhorn von einem insgesamt hohem Nährstoffauswaschungspotential ausgegangen werden. Das Untersuchungsgebiet Landkreis Gifhorn eignet sich daher gut als 'worst case'.

Messung und Modellierung der N2O- und N2-Bildung durch Denitrifikation in der Drainzone zur standortspezifischen Abschätzung des Nitratabbaus in der ungesättigten Sickerwasserzone unterhalb des Wurzelraumes

Das Ziel dieses Verbundvorhabens ist die quantitative Bestimmung der Minderung von Nitrateinträgen in das Grundwasser durch den Abbau von Nitrat zu N2O und N2 durch Denitrifikation in der Drainzone. Dazu wird die Denitrifikation in Proben aus der Drainzone in Abhängigkeit wichtiger Bodeneigenschaften gemessen und ein Modell entwickelt und parametrisiert. Dazu werden typische Standorte in Deutschland mit unterschiedlich mächtigen Drainzonen untersucht. Die modellhafte Beschreibung wird auch eine standortspezifische Bewertung des Nitratabbaus ermöglichen. Damit wird das Verbundvorhaben unsere Kenntnisse über den Nitratabbau und die N2O und N2 Produktion im Unterboden, speziell aus der Drainzone erweitern und damit die Grundlage zu einem Landmanagement legen, das die Umsätze von Nitrat in dieser Zone berücksichtigt.

MINCA - MItigation der StickstoffbelastuNg auf der CAtchment-Skala

Die Intensivierung der Landwirtschaft und insbesondere der Einsatz von Düngemitteln ist der Schlüssel zur Ernährungssicherung einer wachsenden Weltbevölkerung. Der im Dünger enthaltene Stickstoff geht jedoch nicht nur in die pflanzliche Biomasse ein und wird schließlich geerntet, sondern wird auch als reaktiver Stickstoff (Nr) über verschiedene gasförmige und hydrologische Pfade in die Umwelt abgegeben. Dies führt zu gravierenden Umweltproblemen wie Eutrophierung, Treibhausgasemissionen oder Grundwasserverschmutzung. Wir gehen davon aus, dass wissenschaftlich fundierte Stickstoffminderungsstrategien es ermöglichen, die N2O- und NH3-Emissionen zu reduzieren und die NO3-Einträge in die Gewässer zu verringern, während die Erträge erhalten bleiben. Ziel des MINCA-Projekts ist daher die Etablierung eines gekoppelten, prozessbasierten hydro-biogeochemischen Modells zur Identifizierung von Feldbewirtschaftungsstrategien zu nutzen, die es ermöglichen, den Nr-Überschuss zu reduzieren und damit die N-Belastung in landwirtschaftlich dominierten Landschaften zu mindern. Unser besonderes Interesse gilt den Nr-Umwandlungsmechanismen an den Schnittstellen von Feldern, Grundwasser, Uferzone und Bächen. Um das derzeit begrenzte Verständnisses der zeitlichen und räumlichen hydro-biogeochemischen Flüsse bei der Nr-Transformation in der Landschaft zu überwinden, werden wir innovative Feldexperimente mit einem prozessbasierten Modellierungsansatz kombinieren. Der N-Zyklus in hydro-biogeochemischen Modellen ist jedoch komplex und die Validierung der zugrunde liegenden Prozesse datenintensiv. Die Messungen werden daher auf vier verschiedenen landwirtschaftlichen-, einem Grünland- und einem Waldgebiet durchgeführt. MINCA besteht aus vier eng miteinander verbundenen Arbeitspaketen (WP). In WP1 werden bereits laufende Messung der Wasser- und Stickstoffflüsse im Vollnkirchener Bach Studiengebiet beschrieben. Die bereits relativ umfangreichen kontinuierlichen Messungen, z.B. N2O-Emissionen, Bodenfeuchte, Abfluss und Gewässerqualität, sollen durch weitere Messungen wie NO3-Auswaschung und -Konzentrationen, saisonale Blattflächenindices, Erträge, Biomasse und deren C- und N-Gehalt ergänzt werden. Zusätzlich werden 15N2O und 15NO3 Isotopomer in Feldkampagnen gemessen. Komplexe Messungen für Modellversuche in WP1, modellbasierte hochskalierungs-Methoden im Rahmen von WP2 und Parameterreduktion, Unsicherheitsanalyse und Prozessplausibilitätsprüfung von WP3 erlauben es uns zu erkennen, wann und wo N-Belastung in der Landschaft auftreten. Dieses vertiefte Wissen wird die Grundlage für die Entwicklung von wissenschaftlich fundierten Mitigationsszenarien im WP4 bilden. Das gekoppelte Modell wird im Echtzeit-Modus ausgeführt, um die vom Bundesministerium für Ernährung und Landwirtschaft erstrebten Zielwerte von reduziertem Nr-Überschuss zu erreichen. Maßgeschneiderte in-situ-Experimente zu N2O-Emissionen und NO3-Auswaschung werden die Wirksamkeit des Minderungspotenzials aufzeigen.

Messung und Modellierung der N2O- und N2-Bildung durch Denitrifikation in der Drainzone zur standortspezifischen Abschätzung des Nitratabbaus in der ungesättigten Sickerwasserzone unterhalb des Wurzelraumes, Messung und Modellierung der N2O- und N2-Bildung durch Denitrifikation in der Drainzone zur standortspezifischen Abschätzung des Nitratabbaus in der ungesättigten Sickerwasserzone unterhalb des Wurzelraumes

Das Ziel dieses Verbundvorhabens ist die quantitative Bestimmung der Minderung von Nitrateinträgen in das Grundwasser durch den Abbau von Nitrat zu N2O und N2 durch Denitrifikation in der Drainzone. Dazu wird die Denitrifikation in Proben aus der Drainzone in Abhängigkeit wichtiger Bodeneigenschaften gemessen und ein Modell entwickelt und parametrisiert. Dazu werden typische Standorte in Deutschland mit unterschiedlich mächtigen Drainzonen untersucht. Die modellhafte Beschreibung wird auch eine standortspezifische Bewertung des Nitratabbaus ermöglichen. Damit wird das Verbundvorhaben unsere Kenntnisse über den Nitratabbau und die N2O und N2 Produktion im Unterboden, speziell aus der Drainzone erweitern und damit die Grundlage zu einem Landmanagement legen, das die Umsätze von Nitrat in dieser Zone berücksichtigt.

Nachhaltiger Winterrapsanbau durch züchterische Verbesserung der NUE und Optimierung des Anbausystems, Teilprojekt A

Das Ziel des Projektes besteht darin, ausgehend von genomisch selektierten, stickstoffeffizienteren Winterrapshybriden in einem mehrstufigen Ansatz optimierte Anbauverfahren zu entwickeln, die bei deutlich niedrigerer Stickstoffzufuhr höhere und stabile Rapserträge und geringere N-Bilanzüberschüsse realisieren. Das Projekt verfolgt die Hypothesen, dass sowohl durch die Einzelfaktoren i) Genotyp, ii) Düngerform und iii) Saattechnik, aber insbesondere durch eine abgestimmte Kombination der genannten Faktoren, Einfluss auf die Reduktion der N-Bilanzüberschüsse bei gleichem oder sogar höherem Ertrag genommen werden kann. Daher sollen im Projekt NaWiRa nährstoffeffizientere Winterrapshybriden identifiziert und die Wechselwirkung zwischen Hybriden, der Stickstoffdüngung und einer optimierten Standraumverteilung durch Gleichstandsaat untersucht werden. Die Analyse dieser vielschichtigen Wechselwirkungen soll Antworten auf die Frage geben, wie genomische Selektion, Stickstoffdüngerapplikation und Saattechnik aufeinander abzustimmen sind, um eine bestmögliche Nutzung des Stickstoffdüngers zu erzielen und dadurch die Nachhaltigkeit des Winterrapsanbaus zu verbessern. Dies soll den Startpunkt für neue, zukunftsweisende Anbausysteme im Winterraps darstellen. Ausgehend von den hier gewonnenen Erkenntnissen zur Optimierung der Genotyp-Düngung-Saattechnik-Interkationen soll der Weg für z.B. eine GPS-gesteuerte mechanische Unkrautkontrolle geebnet und darüber hinaus die Entwicklung in Richtung Spot-Farming vorangetrieben werden. Letzteres soll perspektivisch durch eine georeferenzierte Positionierung der Pflanzen eine pflanzenspezifische robotergesteuerte Düngerapplikation erlauben.

1 2 3 4 531 32 33