API src

Found 432 results.

Related terms

Spurenelementkreisläufe und Flüsse im südlichen Indischen Ozean - ein Beitrag zu GEOTRACES

Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.

Einsatz von Nitrifiziden - C- und N-Umwandlungsprozesse

Nitrifikationsinhibitoren bieten die Moeglichkeit, mineralische N-Duenger und organische Duenger effektiv und umweltschonender (Nitratproblematik) einzusehen. Bisherige und laufende Untersuchungen erstrecken sich auf die Erfassung von Wirkungsparametern in Abhaengigkeit von Boden- und Umweltbedingungen, Bewirtschaftungsmassnahmen ua. Im Rahmen der Grundlagenforschung werden Probleme der N-Dynamik im Boden in Abhaengigkeit von der organischen Duengung (Guelle) sowie generell Fragen der Umsetzung organischer Duenger im Boden bearbeitet.

Molekularbiologische Analyse der Rolle der Mykorrhiza für den Schwefelhaushalt der Pappel

Mykorrhizen sind in der Lage, das Wachstum der Bäume durch erhöhte Aufnahme von Nährstoffen zu verbessern. Im Gegensatz zu Phosphat und Nitrat, ist nur wenig über die Bedeutung der Mykorrhiza für die Aufnahme und den Metabolismus von Schwefel bekannt, obwohl schwefelhaltige Stoffe eine wichtige Rolle bei Rhizobiumwurzel Symbiose spielen, die in vielen Aspekten ähnlich zu Mykorrhizierung ist. Ziel des Projekts ist es, Gene des Schwefelhaushalts von Wurzeln zu identifizieren, die bei der Wechselwirkung Wurzelpilz eine Rolle spielen, und deren Expression und Regulation zu analysieren. Als Modellsystem soll dabei die Pappel und der Pilz Amanita muscaria eingesetzt werden. In diesem Modellsystem soll die Hypothese überprüft werden, dass der Pilz die Sulfatversorgung der Pflanze durch eine erhöhte Aufnahme sowie einen intensiven Austausch mit der Wurzel verbessert und, in Analogie zu Rhizobien, dem Pilz von der Pflanze reduzierter Schwefel in Form von Glutathion zur Verfügung gestellt wird. In der ersten Phase wird der Einfluss der Schwefel- und Stickstoffernährung auf die Expression der Gene des Schwefel-Metabolismus in Pappel und im Pilz untersucht. Weiterhin soll der Einfluss der Modulation des Schwefelhaushalts in Pappeln durch genetische Manipulation auf die Wechselwirkung im Schwefelhaushalt zwischen Wurzel und Pilz analysiert werden.

Modellierung des Verbleibs von organischem Kohlenstoff und Mikroverunreinigungen in biologisch-aktiven Aktivkohlefiltern

Das Vorkommen von organischen Mikroverunreinigungen (OMP) in Gewässern ist aufgrund ihrer potenziellen Bedrohung für die Umwelt und die menschliche Gesundheit sehr kritisch. Kläranlagenabläufe sind eine der Hauptquellen für OMPs; deshalb werden derzeit neue rechtliche Rahmenbedingungen diskutiert und verschiedene Technologien zur Reduktion von OMPs untersucht. Granulierte Aktivkohlefilter (GAK) haben sich als geeignete Technologie zur Entfernung von OMP aus Kläranlagenabläufen etabliert. Neben der adsorptiven Entfernung sind GAK-Filter auch in der Lage, organische Stoffe und OMPs biologisch zu entfernen. Die Phänomene, die diesen adsorptiven und biologischen Abbau steuern, sowie die Synergien zwischen diesen beiden Mechanismen sind von großer Bedeutung, jedoch sind die Prozesse sehr komplex. Zum einen handelt es sich bei Abwässern um Multikomponentengemische, die schwer zu charakterisieren sind, und zum anderen sind die verschiedenen Wechselwirkungen zwischen GAK, Biofilm, OMP und organischen Stoffen nur schwer experimentell zu erfassen. Mathematische Modelle sind ein leistungsfähiges Instrument zur Überwindung solcher experimentellen Hindernisse, zur Analyse verschiedener Szenarien und zur Unterstützung der Planung weiterer Experimente. Anhand von Versuchsdaten wurde ein erstes mathematisches Modell entwickelt, das die Entfernung von gelöstem organischem Kohlenstoff in einem biologisch aktiven GAK-Filter zufriedenstellend beschreiben kann. Dieses Projekt zielt darauf ab, dieses Modell zu verbessern und um neue Schlüsselmerkmale zu erweitern, die für eine weitere Anwendung erforderlich sind. Insbesondere sollen drei Hypothesen getestet werden: (i) Ist es möglich, die Porengrößenverteilung in das Modell aufzunehmen? Die Porengrößenverteilung ist ein Schlüsselparameter für die Charakterisierung der verschiedenen GAK-Typen, daher ist ihre Implementierung in das Modell unerlässlich. Die herkömmlichen Ansätze erfordern jedoch Parameter, die schwer zu bestimmen sind. (ii) Könnte eine mikrobielle Gemeinschaft, die den Stickstoffzyklus einschließt, die Qualität des Modells verbessern? Auf der Grundlage experimenteller Belege, die den biologischen Abbau von OMPs mit der Aktivität von Nitrifikanten in Verbindung bringen, zielt das Projekt darauf ab, co-metabolische Prozesse zu implementieren und ihre Auswirkungen auf die globalen Modellierungsergebnisse zu bewerten. (iii) Wie können einzelne OMPs in das Modell einbezogen und ihr Verhalten zufriedenstellend wiedergegeben werden? Die Vorhersage des Abbaus einzelner OMPs ist von großer Bedeutung. Daher werden exemplarisch vier OMPs in das Modell aufgenommen und als Stellvertreter für den Abbau weiterer OMPs verwendet. Da die mechanistische Beschreibung der OMPs sehr kompliziert werden kann, wird der Ansatz des mechanistischen Modells mit Methoden des maschinellen Lernens kombinieren.

Biogeochemie von Spurenelementen im Südost-Atlantik; ein deutscher Beitrag zum internationalen GEOTRACES-Programm

Unsere bewilligte Forschungsfahrt M121 mit FS Meteor im Südostatlantik wird im November/Dezember 2015 stattfinden. Mit dem vorliegenden Antrag beantragen wir Mittel für Personal zur Teilnahme an der Fahrt und Kosten für die Auswertephase nach der Fahrt. Der Fokus des Projektes liegt auf der Biogeochemie und chemischen Ozeanographie von Spurenmetallen, wofür aber auch physikalische und biologisch-ozeanographische Informationen gesammelt werden. Die Untersuchungsschwerpunkte sind die detaillierte Erfassung der Verteilung von Spurenelementen in der Wassersäule des Südostatlantiks, die Untersuchung von Eintrags- und Austragsmechanismen, die biogeochemischen Zyklen dieser Spurenelemente, und deren Zusammenhänge mit dem Stickstoffkreislauf im Untersuchungsgebiet. Die Ausfahrt wird als offizieller Bestandteil in das international koordinierte GEOTRACES-Programm eingebettet sein. Der erste Schwerpunkt wird die detaillierte Untersuchung der Verteilung der Spurenelemente in der Wassersäule des Benguela-Auftriebs sein, von denen einige als limitierende Mikronährstoffe der Bioproduktivität und der Diazotrophie fungieren. Wir werden die Beziehung zwischen Makro- und Mikronährstoffkonzentrationen und den Flüssen dieser Nährstoffe untersuchen sowie die Beziehung zur biologischen Produktivität und dem Stickstoffzyklus. Die Spurenmetallverteilung soll auch mit der Verteilung und Mischung der Wassermassen im Benguela-Auftriebsgebiet und deren Eigenschaften in Verbindung gebracht werden, insbesondere den Sauerstoffgehalten und dem Austausch mit dem anoxischen Schelf. Weiterhin werden wir den Eintrag und die Eintragswege der Spurenmetalle über Staub (Wüste Namib), Sediment und große Flüsse (hauptsächlich Orange und Kongo) erfassen. Den Abschluss der Projektarbeiten wird die Verteilung der Spurenmetalle in der gesamten Wassersäule im offenen Ozean des Südostatlantiks als Funktion der großskaligen Ozeanzirkulation und Wassermassenmischung sein; diese Arbeiten werden in enger Kooperation mit J. Scholten und M. Frank (Kiel) stattfinden, die einen komplementären Antrag einreichen. Die Arbeiten dieses Projektes haben eine Bedeutung für das globale Verständnis der Rolle unterschiedlicher Prozesse, die die chemischen Umweltbedingungen im Ozean, mit dem Fokus auf Spurenmetalle, steuern und in denen die Ökosysteme funktionieren.

Standortdifferenzierte Modellierung der N-Dynamiken zur Verringerung der gasförmigen N-Emissionen und weiterer N-Verluste im Pflanzenbau

Die Antragsteller sind durch erfolgreiche, jahrelange Forschungsarbeit Experten für das Thema N-Kreislauf, N-Verluste und Modellierung und möchten die vorhandene Kompetenz sowie schon vorhandene eigene Versuchsdaten und -ergebnisse verwenden, um den N-Kreislauf einschließlich der N-Emissionen zu simulieren. Hierfür werden wir ausgewählte Varianten von fünf Feldversuchen untersuchen, für die schon für Zeiträume zwischen vier und 116 Jahren relevante Daten z.B. zur N-Aufnahme, Gehalte des organischen Kohlenstoffs und des Gesamtstickstoffs, oder Klimagasmessungen zur Verfügung stehen. Die Versuche wurden an unterschiedlichen Standorten in ganz Deutschland angelegt und decken verschiedenste Bodencharakteristika und Klimata ab. Durch die Verwendung schon vorhandener Daten und die erweiterte eigene Beprobung kann ein viele Jahrzehnte umfassender Datensatz (Pflanze x Management x Umwelt-Interaktionen) an verschiedenen Standorten modellbasiert und damit kostengünstig ausgewertet werden. In dem vorgestellten Projekt soll die prozessbasierte dynamische open-source-Modellplattform SIMPLACE eingesetzt werden. SIMPLACE berechnet u.a. den täglichen Nährstoffumsatz im Boden, den Nitrataustrag, die N2O-Emissionen abhängig von den Bodencharakteristika sowie das Pflanzenwachstum. Die Ziele des vorgestellten Projekts sind 1) den C-/N-Kreislauf und die Verluste besser zu verstehen, 2) die vielen Daten der unterschiedlichen Standorte zu verwenden, um das Modell robust zu kalibrieren und validieren, 3) Managementszenarien (Fruchtfolgen, Zwischenfrüchte, organische und anorganische Düngung) und deren Auswirkungen auf N-Verluste zu messen und zu simulieren, um die Wirksamkeit von Maßnahmen standortdifferenziert und unter verschiedenen Wetterbedingungen zu quantifizieren, sowie 4) Emissionsminderungspotentiale unterschiedlicher Bodenmanagementstrategien aufzuzeigen, um modellgestützte deutschlandweite Handlungsempfehlungen für ein klimaschonendes Stickstoffmanagement zu ermöglichen.

Deutscher Beitrag zu Klimaprojektionen für CMIP7 - AR7 Fast Track, DECK- und ScenarioMIP-Simulationen, Teilprojekt 1: Koordination, Modell Weiterentwicklungen und Produktion (DWD)

Harmonisierte Bilanzierung des Nährstoffhaushaltes auf Intensivmessflächen des Forstlichen Umweltmonitorings, Teilvorhaben 7: Simulation der Stoffflüsse

Biogeochemie von Spurenmetallen und deren Isotope im Südindischen Ozean, Vorhaben: Produktivität des Oberflächenwassers und deren Kohlenstoff- und Stickstoffkreisläufe

Modellierung des Einflusses von Pflanzenrückständen, flüssigorganischer Düngung und zugehöriger Applikationstechnik auf N2O und N2-Emissionen aus landwirtschaftlichen Böden

Die Düngung von Ackerböden mit Gülle und die Einarbeitung von Ernterückständen beeinflussen gasförmige N-Verluste in die Atmosphäre einschließlich NO, N2O und N2 sowie die Nitratauswaschung. Ihr Ausmaß hängt von der komplexen Wechselwirkung zwischen Techniken zur Bewirtschaftung von Gülle und Ernterückständen sowie von den Eigenschaften dieser Substrate und des Bodens ab. Die erste Phase von MOFANE befasste sich mit der allgemeinen Frage, wie sich die Gülledüngung und ihre Ausbringungsweise auf die N2O- und N2-Flüsse aus landwirtschaftlichen Böden auswirken, wie ihre Optimierung Emissionen verringern und gleichzeitig die Ernteerträge erhalten können und wie die Modelle verbessert werden müssten, um Antworten zu finden. Wir haben dies durch gezielte Experimente zur Quantifizierung von N2-, N2O- und NO-Flüssen sowie von Bruttomineralisierungs- und Nitrifikationsraten von Boden-Gülle-Systemen unter kontrollierten Bedingungen bearbeitet und die Ergebnisse zur Bewertung und Verbesserung von Modellen verwendet. Hier beantragen wir ein Follow-up mit dem Ziel, die Auswirkungen von Pflanzenrückständen auf die Denitrifikationsdynamik in unsere Modelle einzubeziehen und die Porenstruktur sowie die Verteilung von Gülle und Ernterückständen zu quantifizieren, um verbesserte Eingangsdaten für das Modell zu liefern. Aufbauend auf der ersten Phase quantifizieren wir nun Hotspots, die durch die Ausbringung von organischem Dünger entstehen mit einer Kombination aus Röntgen-CT und O2-Mikrosensoren in Experimenten mit strukturiertem Boden. Während in der ersten Phase der Fokus nur auf Gülle lag, werden wir auch die Einarbeitung von Pflanzenresten untersuchen. Unser Arbeitsprogramm umfasst folgende Aufgaben. - Untersuchung der Denitrifikation in strukturierten Böden unter realistischen Bedingungen mit 1) verschiedenen organischen Substraten, nämlich Gülle und Pflanzenresten und 2) unterschiedlicher Ausbringung, eingearbeitet durch Pflügen (konventionelle Bodenbearbeitung) und mit einem Grubber (reduzierte Bodenbearbeitung) - Reduzierung der strukturellen Komplexität von natürlichen, ungestörten Böden auf eine begrenzte Anzahl von aussagekräftigen Größen, die durch Röntgen-CT abgeleitet werden, was in Modellparameter übersetzt werden kann, die 1) den Hotspot, den Boden und seine Grenzschicht und 2) die Verteilung der Hotspots beschreiben. - Explorative Modellentwicklung zur Beschreibung von Hot-Spot-Effekten der Einarbeitung von Gülle und Ernterückständen durch konventionelle und reduzierte Bodenbearbeitung auf die Denitrifikation, einschließlich der weiteren Verbesserung und Entwicklung des DyMaN-Submoduls, das ursprünglich zur Modellierung von räumlichen Gülleeffekten konzipiert wurde, um auch Hot-Spot-Effekte von Pflanzenrückständen abzudecken. - Implementierung von Modellansätzen, die räumliche Effekte auf den C- und N-Kreislauf beschreiben, in das biogeochemische Modell DNDCv.CAN. Modellvalidierung des integrierten Modells entlang bestehender Datensätze

1 2 3 4 542 43 44