API src

Found 471 results.

Related terms

Hydrogeologische Übersichtskarte von Niedersachsen 1 : 200 000 - Schutzpotenzial der Grundwasserüberdeckung (WMS Dienst)

Die Karte "Hydrogeologische Übersichtskarte von Niedersachsen 1 : 200 000 - Schutzpotenzial der Grundwasserüberdeckung" bewertet die anstehenden Gesteine nach Beschaffenheit und Mächtigkeit im Hinblick auf ihr Vermögen, den oberen Grundwasserleiter vor der Befrachtung mit potenziellen Schadstoffen zu schützen. Das Grundwasser gilt dort als gut geschützt, wo gering durchlässige Deckschichten über dem Grundwasser die Versickerung behindern und wo große Flurabstände zwischen Gelände und Grundwasseroberfläche eine lange Verweilzeit begünstigen. Das Schutzpotenzial wird summarisch drei Klassen zugeordnet, in denen unterschiedliche stoffmindernde Eigenschaften der Gesteine in der Grundwasserüberdeckung zusammengefasst dargestellt werden. • gering < 1m gering durchlässige Gesteine (Ton, Schluff) oder < 5m gut durchlässige Gesteine (Fein- bis Mittelsand) oder < 10m sehr gut durchlässige Gesteine (Grobsand, Kies, klüftiges oder verkarstetes Festgestein) • mittel 1 - 5m gering durchlässige Gesteine (Ton, Schluff) oder 5 – 10m gut durchlässige Gesteine (Fein- bis Mittelsand) oder > 10m sehr gut durchlässige Gesteine (Grobsand, Kies, klüftiges oder verkarstetes Festgestein) • hoch > 5m gering durchlässige Gesteine (Ton, Schluff) oder > 10m gut durchlässige Gesteine (Fein- bis Mittelsand) Grundsätzlich ist Grundwasser gegen Befrachtungen mit potenziellen Schadstoffen, die als flüssige Phasen oder gelöst mit den versickernden Niederschlägen eingetragen werden, überall dort geschützt, wo gering durchlässige Deckschichten über dem Grundwasser die Versickerung behindern und wo große Flurabstände zwischen Gelände- und Grundwasseroberfläche eine lange Verweilzeit begünstigen, innerhalb der Stoffminderungsprozesse wirksam werden können. Bei den zu betrachtenden Stoffen können grob drei Gruppen unterschieden werden: • biologisch abbaubare Stoffe (z.B. bestimmte organische Verbindungen, Stickstoffverbindungen) • adsorbierbare Stoffe (z.B. bestimmte organische Verbindungen, Schwermetalle, einige Kationen von Salzen) • persistente Stoffe (z.B. bestimmte organische Verbindungen) Bei den Stoffminderungsprozessen, die durch lange Verweilzeiten in der ungesättigten Zone begünstigt werden, sind mehrere Kriterien zu berücksichtigen: • bei flüssigen Phasen spielt die Viskosität eine große Rolle, dünnflüssige Phasen können leicht durchsickern, während pastöse Phasen bereits im Boden zurückgehalten werden. • feste Phasen im Gestein oder an der Oberfläche werden je nach Löslichkeit unterschiedlich ausgewaschen • bei der Adsorption von Stoffen spielen die verfügbaren Oberflächen von Tonmineralen und der Gehalt an organischem Kohlenstoff eine übergeordnete Rolle. Die Versickerungsfähigkeit wässriger Lösungen beruht wesentlich auf der Durchlässigkeit der durchsickerten Gesteine. Diese wiederum hängt von den effektiven Hohlraumanteilen ab, die im Lockergestein durch den Porenraum, im Festgestein durch vernetzte Klüfte, Schichtfugen und Lösungshohlräume bestimmt werden. In die Klasse „gering“ sind die Gebiete eingestuft, in denen aufgrund sehr geringer Mächtigkeiten oder des Fehlens potenzieller Barrieregesteine (Ton, Schluff), bzw. geringer Flurabstände die Verweildauer von eingedrungenen Schadstoffen kurz ist und adsorptive Oberflächen kaum oder gar nicht vorhanden sind. Daher können Stoffminderungsprozesse (Abbau, Adsorption) kaum stattfinden. In die Klasse „mittel“ sind die Gebiete eingestuft, in denen aufgrund mittlerer Mächtigkeiten potenzieller Barrieregesteine (Ton, Schluff), bzw. mittlerer Flurabstände die Verweildauer von eingedrungenen Schadstoffen mäßig ist und adsorptive Oberflächen in geringem Umfang vorhanden sind. Daher können Stoffminderungsprozesse (Abbau, Adsorption) in beschränktem Maße stattfinden. In die Klasse „hoch“ sind die Gebiete eingestuft, in denen aufgrund großer Mächtigkeiten potenzieller Barrieregesteine (Ton, Schluff), bzw. großer Flurabstände bei durchlässigen Gesteinen die Verweildauer von eingedrungenen Schadstoffen groß ist und /oder adsorptive Oberflächen in hohem Umfang vorhanden sind (Ton). Daher können Stoffminderungsprozesse (Abbau, Adsorption) in besonders starkem Maße stattfinden. Potenzielle Reinigungsvorgänge im grundwassererfüllten Bereich bleiben außer Betracht. Festgesteinsgebiete wurden anhand des Grundwasserleitvermögens der oberflächennah anstehenden Gesteine beurteilt.

Chem-Org\Harnstoff-DE-2020

Daten aus #1, Snamprogetti- Amminia- and Self-Stripping Processes und Granelli 1988. Dampfbedarf von 750 kg (110bar, 510°C) soll aus Mix-Industrie (3,7 MJ/kg*750 kg= 2775 MJ/t geliefert werden. Emission in Luft und Wasser unklar, jeweils NH3 oder N-Verbindungen. Die CO2-Anbindung wird über die Eingabe von negativen Emissionen eingetragen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 176% Produkt: Grundstoffe-Chemie

Chem-Org\Harnstoff-DE-2030

Daten aus #1, Snamprogetti- Amminia- and Self-Stripping Processes und Granelli 1988. Dampfbedarf von 750 kg (110bar, 510°C) soll aus Mix-Industrie (3,7 MJ/kg*750 kg= 2775 MJ/t geliefert werden. Emission in Luft und Wasser unklar, jeweils NH3 oder N-Verbindungen. Die CO2-Anbindung wird über die Eingabe von negativen Emissionen eingetragen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 176% Produkt: Grundstoffe-Chemie

Chem-Org\Harnstoff-DE-2005

Daten aus #1, Snamprogetti- Amminia- and Self-Stripping Processes und Granelli 1988. Dampfbedarf von 750 kg (110bar, 510°C) soll aus Mix-Industrie (3,7 MJ/kg*750 kg= 2775 MJ/t geliefert werden. Emission in Luft und Wasser unklar, jeweils NH3 oder N-Verbindungen. Die CO2-Anbindung wird über die Eingabe von negativen Emissionen eingetragen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 176% Produkt: Grundstoffe-Chemie

Übergabe des SRU-Gutachtens "Stickstoff: Lösungsstrategien für ein drängendes Umweltproblem"

Am 14. Januar 2015 übergab der Sachverständigenrat für Umweltfragen sein Sondergutachten zum Thema "Stickstoff- Lösungsstrategien für ein drängendes Umweltproblem" an Bundesumweltministerien Hendricks in Berlin. Zu hohe Einträge von Stickstoffverbindungen zählen zu den aktuellen ungelösten Umweltproblemen. Deshalb hat der SRU ein Gutachten verfasst, in dem er eine gesamthafte Bestandsaufnahme des Stickstoffproblems unternimmt und Handlungsvorschläge für den Gewässerschutz, den Naturschutz, die Luftreinhaltung sowie den Landwirtschafts- und Verkehrssektor entwickelt.

Bundeskabinett stimmt neuer Oberflächengewässerverordnung zu

Am 11. Mai 2016 stimmte das Bundeskabinett der neuen Oberflächengewässerverordnung zu. Die Neufassung setzt EU-Recht in deutsches Recht um. Wichtige Vorgaben, um den Zustand der Gewässer zu bewerten und zu überwachen, werden aktualisiert und vereinheitlicht. Die Anforderungen an den guten Gewässerzustand werden damit europaweit angeglichen. Neu sind europaweit standardisierte Messkampagnen: für neue Stoffe, die in den Gewässern erst seit kurzer Zeit gefunden werden. Außerdem wird die Datenauswertung zur Gewässerbelastung verbessert. Die Liste der Stoffe, die in Gewässern gemessen werden müssen, wurde gekürzt. Demgegenüber wurden Umweltqualitätsnormen für 12 neue europaweit prioritäre Stoffe und 9 neue spezifische Stoffe festgelegt. Um der Nährstoffüberlastung der Übergangs- und Küstengewässer entgegenzuwirken, macht die Verordnung neue Vorgaben für Stickstoffverbindungen in Gewässer, die z. B. durch Düngung aus der Landwirtschaft stammen können. Nur wenn diese eingehalten werden, lässt sich der gute Zustand der Gewässer erreichen oder erhalten.

[Nat] Emissionen und Depositionen von Stickstoffverbindungen

Download-Dienst für nationale Daten für die Meeresstrategie Rahmenrichtlinie Berichtspflicht 2018. Thema: Emissionen und Depositionen von Stickstoffverbindungen

Markt für Blei

technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of primary lead production from concentrate (GLO): There are two basic pyrometallurgical processes available for the production of lead from lead or mixed lead-zinc-sulphide concentrates: sinter oxidation / blast furnace reduction route or Direct Smelting Reduction Processes. Both processes are followed by a refining step to produce the final product with the required purity, and may also be used for concentrates mixed with secondary raw materials. SINTER OXIDATION / BLAST FURNACE REDUCTION: The sinter oxidation / blast furnace reduction involves two steps: 1) A sintering oxidative roast to remove sulphur with production of PbO; and 2) Blast furnace reduction of the sinter product. The objective of sintering lead concentrates is to remove as much sulphur as possible from the galena and the accompanying iron, zinc, and copper sulphides, while producing lump agglomerate with appropriate properties for subsequent reduction in the blast furnace (a type of a shaft furnace). As raw material feed, lead concentrates are blended with recycled sinter fines, secondary material and other process materials and pelletised in rotating drums. Pellets are fed onto sinter machine and ignited. The burning pellets are conveyed over a series of wind-boxes through which air is blown. Sulphur is oxidised to sulphur dioxide and the reaction generates enough heat to fuse and agglomerate the pellets. Sinter is charged to the blast furnace with metallurgical coke. Air and/or oxygen enriched air is injected and reacts with the coke to produce carbon monoxide. This generates sufficient heat to melt the charge. The gangue content of the furnace charge combines with the added fluxes or reagents to form a slag. For smelting bulk lead-zinc-concentrates and secondary material, frequently the Imperial Smelting Furnace is used. Here, hot sinter and pre-heated coke as well as hot briquettes are charged. Hot air is injected. The reduction of the metal oxides not only produces lead and slag but also zinc, which is volatile at the furnace operating temperature and passes out of the ISF with the furnace off-gases. The gases also contain some cadmium and lead. The furnace gases pass through a splash condenser in which a shower of molten lead quenches them and the metals are absorbed into the liquid lead, the zinc is refined by distillation. DIRECT SMELTING REDUCTION: The Direct Smelting Reduction Process does not carry out the sintering stage separately. Lead sulphide concentrates and secondary materials are charged directly to a furnace and are then melted and oxidised. Sulphur dioxide is formed and is collected, cleaned and converted to sulphuric acid. Carbon (coke or gas) and fluxing agents are added to the molten charge and lead oxide is reduced to lead, a slag is formed. Some zinc and cadmium are “fumed” off in the furnace, their oxides are captured in the abatement plant and recovered. Several processes are used for direct smelting of lead concentrates and some secondary material to produce crude lead and slag. Bath smelting processes are used: the ISA Smelt/Ausmelt furnaces (sometimes in combination with blast furnaces), Kaldo (TBRC) and QSL integrated processes are used in EU and Worldwide. The Kivcet integrated process is also used and is a flash smelting process. The ISA Smelt/Ausmelt furnaces and the QSL take moist, pelletised feed and the Kaldo and Kivcet use dried feed. REFINING: Lead bullion may contain varying amounts of copper, silver, bismuth, antimony, arsenic and tin. Lead recovered from secondary sources may contain similar impurities, but generally antimony and calcium dominate. There are two methods of refining crude lead: electrolytic refining and pyrometallurgical refining. Electrolytic refining uses anodes of de-copperised lead bullion and starter cathodes of pure lead. This is a high-cost process and is used infrequently. A pyrometallurgical refinery consists of a series of kettles, which are indirectly heated by oil or gas. Over a series of separation processes impurities and metal values are separated from the lead bouillon. Overall waste: The production of metals is related to the generation of several by-products, residues and wastes, which are also listed in the European Waste Catalogue (Council Decision 94/3/EEC). The ISF or direct smelting furnaces also are significant sources of solid slag. This slag has been subjected to high temperatures and generally contains low levels of leachable metals, consequently it may be used in construction. Solid residues also arise as the result of the treatment of liquid effluents. The main waste stream is gypsum waste (CaSO4) and metal hydroxides that are produced at the wastewater neutralisation plant. These wastes are considered to be a cross-media effect of these treatment techniques but many are recycled to pyrometallurgical process to recover the metals. Dust or sludge from the treatment of gases are used as raw materials for the production of other metals such as Ge, Ga, In and As, etc or can be returned to the smelter or into the leach circuit for the recovery of lead and zinc. Hg/Se residues arise at the pre-treatment of mercury or selenium streams from the gas cleaning stage. This solid waste stream amounts to approximately 40 - 120 t/y in a typical plant. Hg and Se can be recovered from these residues depending on the market for these metals. Overall emissions: The main emissions to air from zinc and lead production are sulphur dioxide, other sulphur compounds and acid mists; nitrogen oxides and other nitrogen compounds, metals and their compounds; dust; VOC and dioxins. Other pollutants are considered to be of negligible importance for the industry, partly because they are not present in the production process and partly because they are immediately neutralised (e.g. chlorine) or occur in very low concentrations. Emissions are to a large extent bound to dust (except cadmium, arsenic and mercury that can be present in the vapour phase). Metals and their compounds and materials in suspension are the main pollutants emitted to water. The metals concerned are Zn, Cd, Pb, Hg, Se, Cu, Ni, As, Co and Cr. Other significant substances are fluorides, chlorides and sulphates. Wastewater from the gas cleaning of the smelter and fluid-bed roasting stages are the most important sources. References: Sutherland C. A., Milner E. F., Kerby R. C., Teindl H. and Melin A. (1997) Lead. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of treatment of electronics scrap, metals recovery in copper smelter (SE, RoW): Conversion of Copper in a Kaldo Converter and treatment in converter aisle. technologyComment of treatment of scrap lead acid battery, remelting (RoW): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. technologyComment of treatment of scrap lead acid battery, remelting (RER): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. Typically this technology produces 5000 t / a sulphuric acid (15% concentration), 25’000 t lead bullion (98% Pb), 1200 t / a slags (1% Pb) and 3000 t / a raw lead matte (10% Pb) to be shipped to primary smelters. Overall Pb yield is typically 98.8% at the plant level and 99.8% after reworking the matte. The operation treats junk batteries and plates but also lead cable sheathing, drosses and sludges, leaded glass and balancing weights. From this feed it manufactures mainly antimonial lead up to 10% Sb, calcium-aluminium lead alloys with or without tin and soft lead with low and high copper content. All these products are the result of a refining and alloying step to meet the compliance with the designations desired. The following by products are reused in the process: fine dust, slag, and sulfuric acid. References: Quirijnen L. (1999) How to implement efficient local lead-acid battery recycling. In: Journal of Power Sources, 78(1-2), pp. 267-269.

Stickstoff - Element mit Wirkung

Stickstoffemissionen aus nahezu allen Gesellschaftsbereichen führen zu Risiken für Mensch und Umwelt. Eine nachhaltiger Umgang mit Stickstoff und seinen Verbindungen spielt daher für das Erreichen der UN Nachhaltigkeitsziele (SDG) ein große Rolle. Als Meilenstein hin zu einem nachhaltigen Stickstoffmanagement, schlägt das Umweltbundesamt für Deutschland eine neue Obergrenze vom 1.000 kt Stickstoff pro Jahr vor. Die neue Obergrenze erfasst nahezu alle Quellen und schließt neben der Landwirtschaft auch Sektoren wie den Verkehr oder die Industrie ein. Das Hintergrundpapier erläutert Hintergründe zu Risiken, fasst den Sachstand zur gegenwärtigen Belastungssituation zusammen und bewertet bestehende Minderungsoptionen anhand der neuen Obergrenze. Quelle: www.umweltbundesamt.de

INI2021 - 8th Global Nitrogen Conference

Das vorliegende Dokument beinhaltet Kurzfassungen von Vorträgen und Ergebnissen anlässlich der 8th Global Nitrogen Conference, die vom 30. Mai bis zum 3. Juni 2021 stattfand. Die International Nitrogen Initiative (INI) veranstaltet in Abständen von drei bis vier Jahren Konferenzen, bei denen der jeweils neueste Stand der wissenschaftlichen Erkenntnisse zu den Quellen reaktiver Stickstoff-Verbindungen, dadurch verursachte Gesundheits-und Umweltschäden, Methoden zu einer bedarfsgerechten Stickstoff-Düngung, technische Innovationen und die Entwicklung der regionalen und globalen Belastung diskutiert werden. Gastgeber der 8th Global Nitrogen Conference war das Umweltbundesamt. Wegen der Covid19Pandemie wurde die Konferenz von 2020 auf 2021 verschoben und virtuell durchgeführt, allerdings von Berlin aus inhaltlich, technisch und organisatorisch betreut. Die Konferenz wurde an den Zusammenhängen zwischen Stickstoff und den globalen Umweltzielen der Vereinten Nationen (Sustainable Development Goals, SDGs) ausgerichtet. Die Gliederung umfasste daher die Themen Ernährung und Lebensstile (SDGs 2, 12 und 11), Landwirtschaft, Nahrungs-und Futtermittel (SDGs 2 und 3), Sicherstellung von Gesundheit, sauberem Wasser und reiner Luft (SDGs 3, 6 und 11), Bekämpfung von Gefahren für die Biodiversität (SDGs 15 und 14), Beobachtung globaler Entwicklungen, Stickstoff-Flüssen sowie Wechselwirkungen zwischen verschiedenen Belastungsursachen (SDG 13), Schließung von Stickstoff-Kreisläufen: Innovationen für ein nachhaltiges Management von Stickstoffverbindungen (SDG 9), Integration wissenschaftlicher Ansätze in die Politik, öffentliches Bewusstsein, Kommunikation (SDGs 4, 8 und 17). Konsequenterweise nimmt die zum Abschluss der Konferenz verabschiedete "Berlin Declaration" aktuelle umweltpolitische Diskussionen und Ziele auf globaler Ebene auf und formuliert auf Basis der neuen wissenschaftlichen Erkenntnisse Vorgaben für das zukünftige politische Handeln auf internationaler und nationaler Ebene. Quelle: Forschungsbericht

1 2 3 4 546 47 48