Das Projekt "Hot gas-cleaning" wird vom Umweltbundesamt gefördert und von DMT-Gesellschaft für Forschung und Prüfung mbH durchgeführt. General Information: Descriptions of the individual parts of the project are given below. Removal of trace elements in hot gas cleaning systems (CSIC). Study of the capture of trace elements by a range of different sorbents - mainly metal mixed oxides, clay materials and alkaline-earth carbonates but also some alumina and siliceous materials - in two laboratory scale reactors (a fixed bed and a fluidised bed) at temperatures between 550 and 750 degree C. Different compositions of the simulated coal gas stream will also be tested. Different sorbents, temperatures and stream gas composition will be studied during each of three periods of six months in each of the three years of the programme. Hot H2S Removal by using waste products as solvents (TGI). Testing of red mud (a residue from aluminium manufacture) and electric arc furnace dust (a residue from steel making) as sorbents for hot dry desulphurisation of coat derived fuel gas. These materials have been chosen as containing potential sorbents including calcium, iron, zinc and manganese oxides. Tests will be carried out in a laboratory-scale pressurised reactor. Use of carbon materials and membranes for hot gas clean up (DMT). Study of the potential use of carbon materials for removing trace metals and sulphur compounds from hot gasification gases (also potentially the separation of light gases such as hydrogen), taking advantage of the stability of carbon at high temperature and in corrosive atmospheres. A bed of carbon (or, where appropriate, another material) alone or in combination with a carbon filtering membrane installed in a laboratory gas circuit will be used: - to study the effect on composition of passing gas from a gasifier through a bed of activated carbon or a carbon molecular sieve at various temperatures, pressures and flow rates. - to repeat the studies as above with a filtering membrane made from carbon added. - to study the combination of sorption/filtration and catalytically active materials (i.e. using catalysts for the CO shift and for hydrogenation). The use of other compounds such as zeolitic membranes or granular beds will also be considered and the advantages of using combined gas clean up systems will be reviewed in the light of the data obtained. Development of improved stable catalysts and trace elements capture for hot gas cleaning in advanced power generation (CRE Group). Studies will be carried out on existing equipment to improve and assess catalysts based on iron oxide on silica and titania with mixed metal oxides to remove ammonia, hydrogen cyanide, hydrogen chloride, arsine, hydrogen sulphide and carbonyl sulphide. Selected catalysts will be tested at pressures up to 20 bar and temperatures in the range 500 - 800 degree C using simulated atmospheres. ... Prime Contractor: Deutsche Montan Technologie, Gesellschaft für Forschung und Prüfung mbH (DMT); Essen; Germany.
Das Projekt "On-line zinc analysis of hot converter exhaust gas" wird vom Umweltbundesamt gefördert und von Krupp Hoesch Stahl durchgeführt. General Information: The growing use of zinc-coated steel sheet in a variety of sectors (motor industry, consumer durables and construction industry) has led to an increase in the zinc content of home scrap, a large proportion of which is recycled in L-D steelworks. From a metallurgical point of view, the Zn coating of the scrap does not interfere with the steel production process, nor does it normally affect product quality. However, the zinc does accumulate in the process dusts. Despite their high iron content, typically around 60 per cent, these dusts cannot be recycled in the sintering plant or the blast furnace because of the zinc load without additional, usually complicated processing stages, above all owing to the risk of scaling in the blast furnace. On the other hand, the typical zinc content of these dusts of 2 per cent is too low to be recycled in zinc foundries. From the purely economic point of view, this currently requires Zn concentrations of well above 30 per cent. If the dusts and slurries from the waste gas cleaning system of an L-D converter are to be recycled internally, the zinc load must be reduced to a level that will not damage the blast furnace. The main source of the zinc in the dusts from waste gas purification is the scrap used in the converter, the Zn content of which can vary considerably. Some types of scrap are practically zinc-free, e.g. the uncoated process scrap or comparable new scrap. However, a large proportion of the scrap used, with the exception of the internal scrap arising in the finishing plants, has an unknown zinc content. This is particularly true of capital scrap. A knowledge of the Zn load per converter batch would basically make it possible to identify and hive off dusts and slurries suitable for the blast furnace. This would permit separation of recyclable and non-recyclable dust fractions, which would reduce the amount of material to be land filled or processed separately. While it is in principle technically possible to study the Zn content of metal in the scrap industry, the information would not normally be very useful, as it is practically impossible to take a representative sample in normal scrap handling practice. A way must therefore be found of reliably quantifying the zinc stream from the converter, in order to be able to determine the zinc load of the dusts and slurries from waste gas purification. The evaporation behaviour of zinc can be harnessed for this purpose, as dusts highly contaminated with zinc are driven off as soon as pig iron is poured over the scrap, or during the following first minutes of blowing, so that a reliable zinc analysis should be possible. The task is to develop a method of detecting zinc in the flue dust of the converter deduster. The objective is to measure the Zn content above a threshold value reliably throughout the process, in order to use this information to separate low-zinc from high-zinc dust fractions.
Das Projekt "Waste treatment plant for the treatment of slurry and liquid brewey wastes" wird vom Umweltbundesamt gefördert und von Eisenmann Maschinenbau KG durchgeführt. Objective: The project aims at demonstrating that slurry-type wastes originating from the food industry - and a brewery is selected as a typical example - constitute a substantial energy resource. These wastes should therefore not be destroyed by an aerobic, energy-demanding process, but on the contrary be treated in such a way as to recover the energy. Biomethanation is an appropriate process for this, provided innovative adequate pretreatments, namely pretreatments with enzymes, make it possible for methane archae-bacteria to transform the organic matter into methane. Besides, the biogas can be utilized by the industry itself and the pollution abatement constitutes an important fringe benefit. General Information: The innovative treatment system consists of 4 consecutive steps. The slurry-type brewery waste will be enzymatically hydrolyzed to monomeric compounds, simultaneously fermented to organic acids and separately biomethanized. Preceeding these two steps is a buffer step to cope with the discontinuous fonctionning of the brewery, namely over the week-end. Following these two steps, is a step of physico-chemically-assisted thickening yielding a filtrate to be recycled in the 3rd step and a sludge to be composted. The first step, buffering, takes place in 5 m3 tank where yeast and marc are mixed and heated at 70 degree of Celsius In this step, the Kieselgur filter aid is specifically removed by fast sedimentation, an essential part or the process. In the second step, 220 l portions of the previous step are mixed with O.O1 per cent enzyme, heated at 70 degree of Celsius and introduced in the first anaerobic reactor of next step. The third step consists of 2 step biomethanation system: acidogenesis and methanogenesis. Acidogenesis is conducted in a 3step cascade mode with part of the sludge recycled, the excess sludge being led to step 4. The gas produced in the acidogenic step passes through the methanogenic reactor. The mixed liquor of the methanogenic step passes through an ultrafiltration device. The liquid portion is of good quality enough to be discharged in the sewer. The more solid portion is fed into step 4. The biogas is stored in a 15 m3 gasholder at low pressure and subsequently at 15 bar in a high pressure container of 67 m3 capacity, in order to allow for a 3 times a week use, at peak-demand times of energy in the brewery. The fourth step collects the excess sludge, thickens it in a filterpress, recycles the filtrate in the third step and yields and easily compostable solid cake. The waste to be treated amounts to 800 m3 y-1, containing 55,300 kg of TOC (total organic carbon).With an expected global conversion of 70 per cent, the biogas yield is 72,000 Nm3 y-1,equivalent to 42.6 toe. Total costs are 920,020 DM, all of it being eligible. EC contribution is 367.850 DM. Total investment cost is 678,020 DM. Maintenance and operation costs amount to 20,000 DM yearly. Per unit thermal kWh produced, this is equal respectively...
Das Projekt "Teil II" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Siedlungs- und Industriewasserwirtschaft durchgeführt. Schwerpunkt der Untersuchungen ist es, den Nutzungsgrad fuer das innerhalb der Abwasser-/Abfallaufbereitung anfallende Biogas zu steigern. Durch ein Verfahren zur biologischen Trennung von Methan und Kohlendioxid mit Hilfe von Algenkulturen wird der Brennwert des Gases erhoeht und dem von Erdgas angenaehert. Die Grundlagenuntersuchungen zur Entwicklung geeigneter Reaktoren werden vom Kooperationspartner energy of nature Projektgesellschaft fuer umwelttechnische Anlagensysteme Leipzig mbH durchgefuehrt. Der vorliegende Antrag beinhaltet die Verfahrensgestaltung, worin die zu entwickelnden speziellen Reaktoren eingebunden werden.
Das Projekt "Almeria solar powered reverse osmosis plant" wird vom Umweltbundesamt gefördert und von DaimlerChrysler Aerospace AG durchgeführt. Objective: To demonstrate, that small scale PV powered water desalination plants can be constructed in a compact and cost efficient way. This type of plant is urgently needed in Southern Europe and Developing Countries. Intensive publicity is intended and good commercialisation is expected (100 systems potential market in Spain only). General Information: On the site of the ALMERIA university, brackish water is pumped from a well of 60m. Drinking water (about 8000 cbm per year) obtained by a reverse osmosis plant is stored for consumption. A 23.5 kWp PV generator supplies the required energy. Number of subsystems: 1 Power of subsystems: 23.5 kWp Total power: 23.5 kWp Module description: 612 AEG type PQ 10/20/01;(Typ I) + 306 AEG type PQ 10/40/01;(T.II) (I): 20 10x10cm poly crist. cells, 6 V,16.5 W (II): 40 10x10cm poly crist. cells, 12 V,38.4 W Very high resistance glass; UV stabilized PVB; 6.7 kg; 0.25 or 0.5 sqm. Connections: type 20: 36 series, 17 parall.: type 40: 18 series, 17 parall. Support: on racks Max. power tracker: included in inverter Charge controller: charge/discharge regulator: special design, microprocessor controlled. Battery: Spanish TUDOR, 110 cells Battery Volt.: 220 V; Battery capacity: 2240 Ah.(at 100 h). (1650 Ah (10h); type C 10 Battery capacity: 493 kWh.(at 100 h). Inverter: (for well water pump only): AEG, Solarverter, type SV3 sinusoidal, transistor-pulse type, 3 kHz. Input nominal: 130 to 300 V DC in; max 16 A Dc; Output nominal: 3.3 kVA; 13 to 127 V out; 3 phases; to 50/60 Hz. Load description: PLEUGER submersible pump NE612 for raw water pumping. (three phase, AC motor, hence inverter necessary). 4.2 cbm/h, header 30 m. Rated power 2.2 kW. ROCHEM (Hamburg) reverse osmosis, type RORO 1535-B 709165; presses raw water through membrane. Input: 92 cbm/day at 7000 ppm; Output: 60 cbm/day at smaller than 500 ppm. New type of PLATE MODULE system, with turbulent flow on the feed water side and hence less membrane scaling and fouling which leads to less maintenance. The pressure pump of the RO system works with 220 V DC motor, 6750 W, avoiding inverters. Monitoring: Weather station; Reading every 10 seconds six relevant plant data, averaging over ten minutes, storing on floppy. (DAM 800 data acquisition system by TELEFUNKEN). Stored data: (1) Insolation, array plane. (2) amb. temp. (3) module temp. (4) array output energy. (5) energy to and from battery. (6) inverter dc energy. Achievements: While the pv generator and the batteries worked without problem the water pumps, the reverse osmosis plant, the inverter and the monitoring system had several, partly major, failures. The Final Report on System Monitoring (5 June 95) analyses 32 month of operation and puts in evidence: the system is well designed for its task; however the frequent failures of some components decrease its effective utilisation. The plant will continue to operate after the end of the project with some improvements (new pumps, new membranes, etc.)...
Das Projekt "Direct recycling of zinc-contaminated LD filter dusts and slurries" wird vom Umweltbundesamt gefördert und von Krupp Hoesch Stahl durchgeführt. Entwicklung von Konzepten von EU-Vorgaben zum Monitoring von FFH-Lebensräumen und Arten. 1) Konzept für die Erstellung eines nationalen Berichts für den Zeitraum bis 2006 auf der Basis eines insgesamt sehr inhomogenen Datenbestandes. 2) Konzept für das Monitoring für folgende Berichtszeiträume inkl. Stichprobendesign.
Das Projekt "Erzeugung von Wasserstoff fuer die Hydrierung von Schweroel und Kohle" wird vom Umweltbundesamt gefördert und von Veba Öl AG durchgeführt. Objective: The aim of the overall project were the planning, construction and industrial testing of a commercial-size entrained-flow gasification plant for the generation of hydrogen, which can be operated on solid fuels, e.g. pyrolysis coke and coal just as well as on liquid hydrogenation residues. The objectives of this project were the determination of data enabling an evaluation of the technical feasibility, the possibilities for official approval and the economic viability of the demonstration plant before the final decision on its construction was taken. Parallel to the planning of the demonstration plant, gasification tests were to be made in an existing pilot plant. These tests were in the first place to determine the design data for the demonstration plant as well as to test and to improve the solid feeding-system and the gasification burner. See project LG/20/84/DE. General Information: For the hydrogenation of coal or heavy oil, a major consideration is the economical and environment-friendly utilization of the hydrogenation residues containing heavy metals which become available as unavoidable by products. As against possible combustion, the gasification of the hydrogenation residues provides the advantage that, in addition to environmentally safe disposal of the residues, it is also possible to produce the hydrogen required after the hydrogenation units. For energetic reasons the direct feeding of the hot hydrogenation residues to the gasification seems to be the most appropriate solution. Because of the interconnection of the gasification and the hydrogenation plants is, therefore, largely dependent on the availability of the residue gasification. In order to avoid this it is necessary to provide for the disconnection of the two processes. This disconnection requires the solidification of the liquid residues and the intermediate storage of the solidified residues. Solidification can be effected by pyrolysis of the hydrogenation residues in indirectly heated rotary drums. The coke from the pyrolysis can be used for hydrogen generation. Because of the production of pyrolysis oil, the residue pyrolysis enables an increase of the total oil yield of hydrogenation plants. The dosage of the solid fuels to the pressurized gasification reactor would be carried out with an extruder feeding-system developed on pilot plant scale by VEBA OEL AG and Maschinenfabrik Werner and Pfleiderer. This feeding system consists essentially of a twin-screw extruder. The finely ground fuel and a small portion of a liquid binding-agent are metered pressure-free into the extruder. Hydrocarbons (heavy oils, used oils) as well as water can be used as binding agents. In the extruder, the solid fuel and the binding agent are first mixed, whereupon the mixture is compressed to a pressure above the reactor pressure. The optimum liquid content for the operation of the extruder depends greatly on the type and granulation of the solid fuel. The compacted fuel leaves ...
Das Projekt "Laugung von Metallen in Gegenwart von Chlorid" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Biowissenschaften durchgeführt. Bei der Haldenlaugung sulfidischer Kupfererze in Chile ist es ein bekanntes Problem, dass sich durch das Recycling des Wassers nach der Solventextraktion des Zielmetalls andere Ionen in der Laugungslösung anreichern. Hier spielt insbesondere Chlorid eine wesentliche Rolle. Für die Laugung des europäischen Kupferschiefers ist es ggf. von Interesse, mit HCl anzusäuern und dann auch in Gegenwart von Chlorid zu laugen. Chlorid hemmt jedoch normalerweise die essenziell wichtigen Eisenoxidierer. Deshalb soll ein deutsch-chilenisches Konsortium gebildet werden, welches gemeinsam im Rahmen eines internationalen r4-Projektes untersucht, wodurch Eisenoxidierer verschiedener Gattungen in die Lage versetzt werden, Chlorid zu tolerieren, und wie diese Eigenschaft praktisch im Rahmen von Haldenlaugung und Reaktorlaugung zur Gewinnung verschiedener Metalle genutzt werden kann. Vorgesehene Partner sind auf deutscher Seite die TU Bergakademie Freiberg (Institute für Biowissensch., Mineralogie, Therm. Verfahrenstechnik, Umwelt- und Naturstoffverfahrenst., sowie für Anorganische Chemie), Fa. G.E.O.S. Halsbrücke, Fa. Erz und Stein Bobritzsch, Fa. Umwelt- und Ingenieurstechnik Dresden und die Universität Duisburg-Essen (Biofilm Centre). Auf chilenischer Seite soll das Konsortium unter Koordination von Prof. Gloria Levicán (Universidad de Santiago de Chile), die Universidad Católica del Norte in Antofagasta, die Universidad Andrés Bello in Santiago und die Fa. Biosigma umfassen sowie ggf. weitere Partner, mit denen erste Gespräche geführt worden sind. Im Rahmen des hier beantragten Projektes soll von Oktober 2014 bis Januar 2015 Personal zur Vorbereitung eines r4-Antrages eingestellt werden. Zudem plant der Projektleiter, im Oktober nach Chile zu reisen, um mit den möglichen dortigen Partnern zunächst Einzelgespräche zu führen. Im Dezember sollen dann im Rahmen eines Workshops (mit Exkursion zu einer Biolaugungsanlage) in Chile weitere Gespräche zwischen allen Beteiligten stattfinden.
Das Projekt "Teilprojekt 2: Umsetzung des CaF2 zu HF" wird vom Umweltbundesamt gefördert und von Fluorchemie Stulln GmbH durchgeführt. Ziel des Projektes ist es ein flexibles und leistungsfähiges Verfahren zu entwickeln, um fluorierte organische Reststoffströme kosten- und energieeffizient in hochwertigen synthetischen Flussspat umzusetzen und diesen direkt als Sekundärrohstoffe in Wertschöpfungsprozesse zurückzuführen. Als neuer Ansatz zur Rückgewinnung von Fluorid aus organischen Verbindungen werden in einer ersten Prozessstufe fluorhaltige aber chlorfreie organische polymere und niedermolekulare Reststoffströme durch eine auto-therme Hochtemperaturkonvertierung (HTC) in CO2, HF und Wasser zerlegt. Die Konversion der dabei entstehenden Gasgemische zu synthetischem Flussspat erfolgt mit zwei Verfahren: einem nasschemischen und einem trockenen, um die Abtrennung der Koppel- und Nebenprodukte vergleichend untersuchen zu können. Das Projekt ist in 5 Arbeitspakete untergliedert, wobei jeweils ein Partner federführend für die Koordination des Arbeitspaketes und die Einhaltung der Arbeits- und Zeitpläne verantwortlich ist (siehe Vorhabensbeschreibung):AP1 Hochtemperatur Konvertierung fluorhaltiger Reststoffe; AP2 Nasschemische CaF2-Herstellung und KonditionierungA; P3 'Trockene' CaF2-Herstellung, AP4 Umsetzung des CaF2 zu HF, AP5 Konzept zur Integration des HTC-Prozesses in den Anlagenverbund. Für jedes Arbeitspaket ist jeweils ein Meilenstein definiert und das Vorgehen beim Erreichen bzw. nicht Erreichen des jeweiligen Entwicklungszieles definiert.
Das Projekt "Technologie fuer die Behandlung und das Recycling des zum Waschen von Oliven verwendeten Wassers" wird vom Umweltbundesamt gefördert und von ARGUS - Umweltbiotechnologie GmbH durchgeführt. The first operation in olive oil production is the washing of the olives, which is needed to eliminate all the impurities - The water used in this process must be drinkable, for reasons of food hygiene, and about 30 to 50 litres are required for each quintal of olives. Nowadays, this water in order to avoid the high costs for the disposal is used for irrigation or simply sent to sewage. Hence such process causes a great consumption of drinkable water. Moreover, the high level of toxicity of this waste causes a strong environmental impact being the water acid (pH is between 3 and 5) and with strong organic carbon content. The aim of the project is to develop a system, based on ultra or micro filtration and reverse osmosis, capable of recycling the 90Prozent of the water used, and producing, as waste, a small amount of polluting solution, to be sent to disposal together with other waste streams. The system will be specifically designed for SMEs, being low cost and small dimensions two guidelines.