Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/landschaftsprogramm/18198308/stadtklima-naturhaushalt/ Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.
Das Klimainformationssystem Bremen zeigt die Bioklimatische Situation im Land Bremen als Klimafunktionskarte. Die Klimafunktionskarte bildet die Funktionen und Prozesse des nächtlichen Luftaustausches für das Stadtgebiet von Bremen und Bremerhaven ab (Strömungsfeld, Kaltluftleitbahnen). Für Siedlungs- und Gewerbeflächen stellt sie die nächtliche Überwärmung dar, basierend auf der bodennahen Lufttemperatur in einer autochthonen Sommernacht um 04:00 Uhr morgens. Die Klimafunktionskarte ist ein Fachplan für die Belange des Stadtklimas und eine wichtige Grundlage für die gesamtstädtische räumliche Entwicklung. Die Karte bildet eine wichtige Abwägungsgrundlage für die bauliche Entwicklung in Bremen und für eine Weiterentwicklung klimawirksamer Freiflächen und Siedlungsstrukturen. Das Klimainformationssystem wurde vom Referat 20 Umweltinnovationen und Anpassung an den Klimawandel der Freien Hansestadt Bremen in Zusammenarbeit mit dem Landesamt GeoInformation Bremen aufgebaut. Die Anwendung selbst, basiert auf dem Open Source Webkarten-Client ‚Masterportal‘. Die Einbindung der Anwendung in eine eigene Webseite ist über einen IFrame möglich.
Das Projekt "Modellierung der Eisbergdrift im Weddellmeer zur Bestimmung des Süßwassereintrages durch Schmelzen und Zerfall" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. (AWI).Ziel der Arbeiten ist die Untersuchung der Drift kleinerer und mittlerer Eisberge im Weddellmeer und des damit verbundenen Süßwassereintrags mit Hilfe gemessener Driftbahnen und numerischer Modellrechnungen. Dabei soll die regionale Verteilung des Schmelzwassereintrags und dessen Bedeutung für die Stabilität der polaren Wassersäule untersucht werden. Ferner soll der Eintrag von Substanzen bestimmt werden, die das Algenwachstum beeinflussen können. Die Driftmessungen erfolgen durch eine tägliche Übertragung der Eisbergpositionen mittels ARGOS Sender. Das Driftmodell berücksichtigt neben der direkten Wirkung von Wind, Ozeanströmung, Meeresoberflächenneigung und Erdrotation auch die Kräfte, die bei einer geschlossenen Meereisbedeckung auftreten, und beinhaltet basales und laterales Schmelzen. Die Ergebnisse der Analyse der Driftbeobachtungen werden zur Validierung der Modellergebnisse und zur Optimierung der angewendeten Parametrisierungen herangezogen.
Das Projekt "Berechnung von Stroemungsfeldern mit der Randintregalmethode" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Hochschule Darmstadt, Institut für Wasserbau, Fachgebiet Ingenieurhydrologie und Hydraulik.
Das Projekt "Ökologische Durchgängigkeit, Wanderkorridore einheimischer Fischarten in stauregulierten Bundeswasserstraßen" wird/wurde ausgeführt durch: Bundesanstalt für Gewässerkunde.Nach derzeitigem Kenntnisstand nutzen wandernde Fischarten die Strömung eines Fließgewässers zur Orientierung. Sie schwimmen gegen die Strömung gerichtet flussaufwärts. Dabei verbrauchen sie Energie. Der Energieverbrauch steigt mit der stärke der Gegenströmung, die der Fisch im Querprofil des Flusses wählt. Es gibt Hinweise, dass der Wanderweg im Querschnitt eines Gewässers dabei nicht zufällig gewählt ist, sondern einen Wanderkorridor gewählt wird, in dem die Strömung zur Orientierung ausreicht aber möglichst geringe Energiekosten verursacht. Im Projekt soll untersucht werden, ob sich solch ein Wanderkorridor belegen und anhand welcher abiotischer Faktoren er sich beschreiben lässt. Dabei werden neben der Strömungsgeschwindigkeit und -richtung auch weitere Faktoren untersucht. Ziel des Projektes ist es, Wanderkorridore für unterschiedliche Arten modellhaft zu beschreiben und Schlüsselfaktoren für eine räumliche und zeitliche Abgrenzung von Wanderkorridoren zu ermitteln.
Das Projekt "Graduiertenkolleg (GRK) 1398: Non-linearities and upscaling in porous media, GRK 1398: Nichtlinearitäten und Upscaling in porösen Medien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.Der Umgang mit Nichtlinearitäten und die Frage des Upscaling stellen eine der größten Herausforderungen für technische und umweltrelevante Anwendungen im Gebiet der Strömungs- und Transportphänomene in porösen Medien dar. Eine Vielzahl hierarchischer (räumlicher und zeitlicher) Skalen können in porösen Medien identifiziert werden, die im Allgemeinen mit deren Heterogenitätsstrukturen zusammenhängen. Strömungs- und Transportphänomene können von gekoppelten Mechanismen verursacht oder beeinflusst werden, die von einem nichtlinearen Zusammenspiel von physikalischen, (geo-)chemischen und/oder biologischen Prozessen herrühren. Um Probleme auf diesem Feld sinnvoll angehen zu können, ist eine interdisziplinäre Umgebung unerlässlich. Die beteiligten Wissenschaftlerinnen und Wissenschaftler zeichnen sich in den unterschiedlichsten Arbeitsgebieten aus: angewandte Mathematik, Umwelt- und Bauingenieurwesen, Geowissenschaften und Erdölingenieurwissenschaften. Die gemeinsamen niederländisch-deutschen Forschungsprojekte werden an der TU Delft, der TU Eindhoven, der Universität Utrecht und der Universität Stuttgart durchgeführt. Grundlagenforschung, so wie etwa die Anwendung stochastischer Modelle und die Entwicklung effizienter numerischer Methoden, soll mit angewandter Forschung auf Feldern wie der Optimierung von Brennstoffzellen, Sequestrierung von CO2 oder der Vorhersage von Hangrutschungen verbunden werden. Als mögliche weiterführende Themen werden auch Anwendungen in der Papierherstellung oder der Biomechanik angestrebt. Ein zentraler Aspekt des Internationalen Graduiertenkollegs ist ein Lehrprogramm, das die Unterstützung von Lehre und Forschung von jungen Wissenschaftlerinnen und Wissenschaftlern zum Ziel hat. Dies soll erreicht werden, indem anspruchsvolle Kurse angeboten werden, die typischerweise die Fragestellungen der jungen Wissenschaftler abdecken. Außerdem soll alle vier Wochen via Videokonferenz ein Graduiertenseminar zur Diskussion von Forschungsergebnissen stattfinden. Es soll weiterhin ein Austauschprogramm geben, das Doktorandinnen und Doktoranden erlaubt, sechs bis neun Monate im Partnerland zu verbringen. Das somit entstehende internationale und interdisziplinäre Umfeld wird es Doktorandinnen und Doktoranden ermöglichen, effizient Spitzenforschung auf dem Feld der Nichtlinearitäten und des Upscaling im Untergrund durchzuführen.
Das Projekt "Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Spontanes Ungleichgewicht (SI)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.Schwerewellen (GWs) sind zu kleinskalig, um in den heutigen Wetter- und Klimamodellen aufgelöst zu werden. Sie müssen daher parametrisiert werden, da sie einen starken Einfluss auf die Dynamik der großen Skalen haben. Parametrisierungen existieren für orographisch und konvektiv erzeugte GWs, während für die GW-Quellen entlang großskaliger Jets noch keine etablierte Parametrisierung vorliegt. Die Quellen resultieren aus einer spontanen Imbalance (SI) der großskaligen quasi-geostrophischen Strömung. Die Untersuchung von Schwerewellenabstrahlung durch SI ist schwierig, da die GWs in ein sehr komplexes zeitabhängiges Strömungsfeld eingebettet sind, mit einer großen Zahl von interagierenden Prozessen. Auch die Validierung von Parametrisierungen wird dadurch erschwert. Daher kombinieren wir Theorie und numerische Modellierung mit ergänzenden Laborexperimenten. Laborexperimente garantieren eine Reproduzierbarkeit der betrachteten großskaligen Strömungssituation. Die direkte Korrespondenz zwischen den experimentellen Daten und den Modelldaten und die erwähnte Reproduzierbarkeit machen das Laborexperiment zu einem idealen Prüfstand für Parametrisierungen und für die Untersuchung klimarelevante Prozesse. Das differenziell beheizte rotierende Zylinderspalt-Experiment, welches an der BTU (Brandenburg Technische Universität Cottbus-Senftenberg) aufgebaut und betrieben wird, stellt die Referenzdaten für Benchmark-Simulationen an der GU-F (Goethe Universität Frankfurt) und dem IAP (Leibniz Institut für Atmosphärische Physik, Kühlungsborn) bereit. Dabei stehen Experimente im Vordergrund, die zeigen sollen, welche baroklinen Strömungen eine besonders ausgeprägte GW-Abstrahlung aufweisen. Ergänzend dazu werden idealisierte numerische Simulationen an der GU-F und dem IAP durchgeführt, um die Variabilität der GWs und den Abstrahlungsprozess zu untersuchen. Wichtig ist dabei, einen Zusammenhang zwischen verschiedenen großskaligen Strömungen und der mesoskaligen GW-Quelle herzustellen und diesen Zusammenhang mittels grob aufgelöster Wellenstrahlenmodelle zu validieren. Ziel ist es, eine skalenabhängige SI-Parametrisierung zu konstruieren. Diese Parametrisierung soll mit Hilfe der Labor-Referenzdaten validiert werden. Begleitet wird dies von einer Analyse grob- und feinaufgelöster Daten aus UA-ICON Simulationen. Schließlich soll die Parametrisierung an das Wellenstrahlenmodell MS-GWaM angekoppelt werden, welches in UA-ICON implementiert ist.
Das Projekt "Modellierung von Strömungen über Bodenformen in Tidegebieten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für marine Umweltwissenschaften.Das Ziel dieses Projekts besteht in der Analyse der Strömungsmuster über subaquatischen Bodenformen in Tidegebieten mit Hilfe hochauflösender numerischer Modelle. In Flüssen, nahe der Küsten und in größeren Tiefen sind Bodenformen weit verbreitet und reflektieren Strömung und Sedimenttransportwege, während sie gleichzeitig einen starken Effekt auf die Strömung ausüben. Diese Effekte sind darüber hinaus von hoher sozio-ökonomischer Bedeutung, z.B. hinsichtlich der Schiffbarkeit von Flussmündungen und der Sicherheit von Offshore-Konstruktionen. Bedingt durch Hydrodynamik und dem Vorkommen sandiger Sedimente sind flache Tidegebiete durch die Entwicklung großer Felder komplexer Bodenformen gekennzeichnet. Strömungsmuster über diesen Bodenformen unterscheiden sich grundsätzlich von Strömungen über gleichmäßigen, idealisiert zweidimensionalen (2D) Bodenformen, die in Strömungskanälen und numerischen Modellen bisher betrachtet werden. Natürlichen Bodenformen sind dagegen intrinsisch dreidimensional (3D) mit komplexen Profilen, gekennzeichnet durch geschwungene Dünenrücken, Kolke, Bifurkationen, Diskontinuitäten und niedrige Leewinkel. In Küstengebieten sorgt die tidebedingte Strömungsumkehr für zusätzliche Komplexität in der Interaktion zwischen Bodenformen und Hydrodynamik. Die entsprechenden Strömungsmuster sind weitgehend unbekannt, insbesondere der Einfluss der Dreidimensionalität der Bodenformen auf die Gezeitenströmung, auch bedingt durch die Schwierigkeit, Strömungsgeschwindigkeiten und Turbulenz synoptisch mit ausreichender räumlicher und zeitlicher Auflösung zu messen. Im Rahmen der hier beschriebenen Studie wird ein dreidimensionales Transportmodell mit dem Modellsystem Delft3D erstellt, um Strömungen in natürlichen Bodenformfeldern mit entsprechend charakteristischer Morphologie zu simulieren. Dazu soll ein bestehendes und zur Simulierung von 2D Bodenformen genutztes Modell erweitert und zur Analyse der Strömungen über 3D Bodenformen verwendet werden. Mit diesem neuen Modell wird zum ersten Mal ermöglicht, Strömungsmuster und Turbulenz über natürlichen Bodenformfeldern unter realistischen Bedingungen, insbesondere unter Berücksichtigung der Umkehr der Gezeitenströmung, zu modellieren und den Einfluss einzelner morphologischer Elemente sowie deren Interaktion herauszuarbeiten. Diese Ergebnisse dienen schließlich der Optimierung und Parametrisierung kleinskaliger Teilprozesse in großmaßstäblichen hydro- und morphodynamischen Modellsystemen.
Das Projekt "Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Probing the Earth's subdecadal core-mantle dynamics based on satellite geomagnetic field models" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Mathematik.The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.
Das Projekt "Systemwirkungsgradoptimale Verdichterauslegung für PEM-Brennstoffzellen in mobilen Anwendungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: FVV e.V..
Origin | Count |
---|---|
Bund | 450 |
Land | 14 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 444 |
Text | 8 |
unbekannt | 8 |
License | Count |
---|---|
geschlossen | 5 |
offen | 455 |
Language | Count |
---|---|
Deutsch | 430 |
Englisch | 62 |
Resource type | Count |
---|---|
Archiv | 2 |
Dokument | 2 |
Keine | 249 |
Webdienst | 3 |
Webseite | 208 |
Topic | Count |
---|---|
Boden | 289 |
Lebewesen & Lebensräume | 289 |
Luft | 304 |
Mensch & Umwelt | 460 |
Wasser | 282 |
Weitere | 459 |