Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Arbeitsgruppe SG 1.1 Biologische Strahlenwirkungen, Biologische Dosimentrie durchgeführt. In der Frage niedriger Dosen ionisierender Strahlen besteht dringender Forschungsbedarf sowohl hinsichtlich der Dosis-Wirkungs-Beziehungen als auch hinsichtlich der biologischen Mechanismen. Es wurde deshalb ein Projekt initiiert, bei dem die Wirkungen niedriger Strahlendosen über die gesamte Lebensspanne in Mäusen beiderlei Geschlechts analysiert wird. Die Tiere wurden einmalig im Alter von 10 Wochen mit Dosen zwischen 0 Gy und 0,5 Gy (60Co) bestrahlt und 4 und 24 Stunden sowie 12 und 18 Monate danach Proben gesammelt. Das Auge wird dabei sofort untersucht, andere Organe zur späteren systematischen Untersuchung asserviert. Um die Frage der genetischen Empfindlichkeit zu untersuchen, werden neben Wildtyp-Mäusen auch heterozygote Mutanten einbezogen; die rezessive Mutation betrifft Ercc2, ein Gen, das an der allgemeinen Transkription und DNA Reparatur beteiligt ist. Durch vielfältige molekulare und 'OMICS'-Analysen einschließlich einer systembiologischen Auswertung wird ein Gesamtbild der Strahlenwirkung über die gesamte Lebenszeit der Maus erwartet, sowie ein Einblick in die Signalwege und Mechanismen niedriger Dosen. Der Fokus des Teilprojekts am BfS liegt auf Herz-Kreislauf-Markern und auf immunologischen Markern. Dazu wird das gesammelte und isolierte Blutplasma für die Bestimmung inflammatorischer Faktoren und Stoffwechselmetabolite verwendet. Mit Hilfe des Multiplex Immunassays (Kooperation Deutsches Diabeteszentrum) werden Veränderungen in bekannten Cytokinen/Chemokinen (z.B. IL-6, IL-8, CRP, TGF-beta, VEGF) analysiert, die strahlenbiologisch bedeutsam sind und möglicherweise als immunologische Marker eine Rolle spielen. An Milzproben werden die im Projekt 'ZISS' identifizierten Proteine, die möglicherweise als Kandidaten für Strahlenempfindlichkeit angesehen werden können, verifiziert. In kryokonservierten Lebern werden Änderungen in der Protein- und Phosphoproteinexpression mittels Proteomics untersucht.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Universitätsklinikum Hamburg-Eppendorf, Klinik für Strahlentherapie und Radioonkologie, Labor für Strahlenbiologie und Experimentelle Radioonkologie durchgeführt. Die Ziele der beiden Projekte AP3 und AP6 sind: Reparaturfoci als Marker der individuellen Strahlenempfindlichkeit zu etablieren sowie Reparaturfoci als Marker der genomischen Instabilität bzw. der homologen Rekombination zu etablieren Arbeitspaket 3: Versuch 1 (V3.1): RF als Marker der individuellen Strahlenempfindlichkeit. Versuch 2 (V3.2): Etablierung eines Lymphozytenarrays. Versuch 3 (V3.3): RF und spätes Normalgeweberisiko. Versuch 4 (V3.4): RF und akute Normalgewebereaktion sowie Tumorreaktion. Arbeitspaket 6: Versuch 1 (V6.1): Genomische Instabilität von Tumorzellen. Versuch 2 (V6.2): Genomische Instabilität von Normalzellen. Versuch 3 (V6.3): Zellulärer Strahlenempfindlichkeit von Tumorzellen.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Entwicklungsgenetik (IDG), Forschungsgruppe Molecular Eye Disease durchgeführt. In der Frage niedriger Dosen ionisierender Strahlen besteht dringender Forschungsbedarf sowohl hinsichtlich der Dosis-Wirkungs-Beziehungen als auch hinsichtlich der biologischen Mechanismen. Es wurde deshalb ein Projekt initiiert, bei dem die Wirkungen niedriger Strahlendosen über die gesamte Lebensspanne in Mäusen beiderlei Geschlechts analysiert wird. Die Tiere wurden einmalig im Alter von 10 Wochen mit Dosen zwischen 0 Gy und 0,5 Gy (60Co) bestrahlt; zunächst wurden die Auswirkungen auf das Auge und das Verhalten der Mäuse sowie pathologische Veränderungen betrachtet. Zu 4 Zeitpunkten (4 und 24 Stunden sowie 12 und 18 Monate nach der Bestrahlung) wurden biologische Proben verschiedener Organe, Blut und Plasma gesammelt und eingelagert. Um die Frage der genetischen Empfindlichkeit zu untersuchen, wurden neben Wildtyp-Mäusen auch heterozygote Mutanten einbezogen; die Mutation betrifft Ercc2, ein Gen, das für eine ATP-abhängige DNA-Helikase kodiert, die an der allgemeinen Transkription und DNA Reparatur beteiligt ist. Vielfältige molekulare und 'OMICS'-Analysen einschließlich einer systembiologischen sind Gegenstand dieses Antrags. Das Ziel des Verbundes ist es, ein ganzheitliches Verständnis der Wirkung niedriger Dosen ionisierender Strahlen auf einen Säugetierorganismus zu erhalten. Dazu werden auch cardio-vaskuläre Effekte, pathologische Veränderungen verschiedener Organe wie Augen, Darm, Lungen, Leber, Niere und Milz sowie Untersuchungen am Blut und Plasma untersucht. In diesen Organen werden globale Genexpressionsdaten gewonnen, so dass wir organspezifische Antworten auf ionisierende Strahlung rekonstruieren und auf bekannte Signalwegen abbilden können, um die informativen Knoten des Netzwerkes zu erkennen. Die geplante Studie ist die erste systembiologische Studie, die die ganze Spannbreite der Antworten der Maus auf niedrige Dosen ionisierender Strahlung erfasst und zugleich Hinweise auf genetisch definierte Unterschiede in der Strahlenempfindlichkeit erlaubt.
Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Radiation Biology and DNA Repair, AG Löbrich durchgeführt. Das Gesamtziel des Vorhabens liegt in der Erforschung des Zusammenhangs zwischen einer genetischen Prädisposition und der Entstehung von Krebs im Kindesalter. Schwerpunkt von AP5 und AP6 ist es, zelluläre Untersuchungen mit molekularen Analysen zu komplementieren, um einen tieferen Einblick in die einer Tumorentstehung zugrunde liegenden molekulargenetischen Ursachen zu erlangen. Dabei wird untersucht, inwieweit sich Checkpoint- und Reparaturkapazität genetisch im Hinblick auf die Krebsentstehung vorbelasteter Personen von gesunden Personen unterscheidet. Genomische Analysen sollen Einblick in mögliche Ursachen der Krebsentstehung liefern. Die Arbeitsschritte (Rekrutierung der Probanden, Etablierung der Zelllinien, molekulare/zelluläre Untersuchungen) werden von verschiedenen Arbeitsgruppen durchgeführt, die eng verzahnt arbeiten. Schließlich sollen die Daten der verschiedenen Endpunkte korreliert und gemeinsam veröffentlicht werden. AP5: Im Rahmen des ISIMEP-Projekts wurden Zelllinien aus Biopsien von Patienten mit Zweittumor nach Ersttumor im Kindesalter und Zelllinien aus Biopsien von Patienten mit Ersttumor im Kindesalter ohne Zweittumor auf ihre Checkpoint- und Reparaturkapazität untersucht. Diese Untersuchungen werden nun an 20 neu etablierten, gematchten Kontrollzelllinien durchgeführt. Von allen 60 Zelllinien sollen molekulargenetsiche Analysen durchgeführt und evtl. vorliegende genomische Auffälligkeiten in Genen der DNA-Reparatur oder Zellzykluskontrolle mit dem zellulären Verhalten korreliert werden. Auffällige Zelllinien werden schließlich eingehenden Reparatur- und Zellzyklusstudien unterzogen. AP6: Die im Rahmen von AP2 rekrutierten ca. 300 Zelllinien aller drei Patientengruppen werden mit den bereits etablierten Screening-Verfahren auf ihr Zellzyklus- und Reparatur-Verhalten nach hohen und nach niedrigen Dosen untersucht. Die Daten werden statistisch ausgewertet und mit den epidemiologischen und genomischen Daten korreliert.
Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von Medipan GmbH durchgeführt. Mit dem Projekt soll eine automatische Auswertung der RF in verschiedenen Zellen und Geweben über intelligente Bildverabeitungsalgorithmen mit Hilfe des AKLIDES® System etabliert werden. Versuch 1 (V7.1): Automatisierung des Nachweises von RF in Lymphozyten. Die Blutlymphozyten von 20 gut charakterisierten, gesunden Spendern (siehe V3.1) wird für die Testung von Reproduzierbarkeit, Stabilität, Sensitivität und Spezifität des Nachweises von RF herangezogen und die optimalen Ausgabeparameter werden bestimmt. Die Gegenkontrolle erfolgt bei allen Etablierungen über die manuelle Auswertung der RF. Eine Validierung erfolgt anhand des Lymphozytenarrays sowie der Proben chronisch exponierter Bergarbeiter (AP1). Versuch 2 (V7.2): Automatisierung des Nachweises von RF in Tumorzellen. Für die Tumorlinien aus AP6 soll für verschiedene RF eine Automatisierung etabliert werden. Dies soll sowohl für RF, die mit der individueller Strahlenempfindlichkeit als auch mit jenen die mit der genomischer Instabilität assoziiert sind, durchgeführt werden. Versuch 5 (V7.3): Automatisierung des Nachweises von RF im Tumorgewebe. Für unter AP5 verwendete Tumorgewebeschnitte sowie den bei AP6 etablierten Tumorarraysoll eine Automatisierung des RF Nachweises etabliert werden. Dabei sind verschiedene Ausgabeparameter zu testen.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Strahlenbiologie durchgeführt. Herz-Kreislauf-Erkrankungen sind eine der häufigsten Todesursachen weltweit. Hohe Dosen ionisierender Strahlung erhöhen dieses Risiko bekanntermaßen - bisher gibt es aber keine deutlichen epidemiologischen Hinweise auf ein erhöhtes Risiko für Dosen unter 0,5 Gy. Daher besteht ein großes Interesse daran, die Wirkungsmechanismen niedriger Strahlendosen zu erforschen. Das Ziel des hier beantragten Projekts besteht in der Untersuchung der mit niedrigen Strahlendosen induzierten Veränderungen des Proteoms des Herzens in einem Maus-Modell mit einer verminderten DNA-Reparaturkapazität; die Auswertung erfolgt in Zusammenarbeit mit der HMGU-ICB-Gruppe (Z3) unter systembiologischen Gesichtspunkten. In Zusammenarbeit mit der HMGU-Verhaltensgruppe (AP2) werden entsprechende Proteom-Untersuchungen am Gehirn durchgeführt. In diesen Organen (Herz, Gehirn) werden globale Proteinexpressionsdaten gewonnen, so dass wir organspezifische Antworten auf ionisierende Strahlung rekonstruieren und auf bekannte Signalwegen abbilden können, um die informativen Knoten des Netzwerkes zu erkennen. Diese regulative Knoten werden mit Immunoblotting oder ähnliche Methoden validiert. Unsere Daten werden mit denen der anderen Kooperationspartner integriert. Auf diese Weise dient die geplante Studie als die erste systembiologische Studie, die die ganze Spannbreite der Antworten der Maus auf niedrige Dosen ionisierender Strahlung erfasst. Zugleich können Hinweise auf genetisch definierte Unterschiede in der Strahlenempfindlichkeit erlaubt.
Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Medizinische Universitätsklinik, Klinik für Strahlenheilkunde durchgeführt. Identifizierung von molekularen Zielstrukturen und Signalnetzwerken, die die zelluläre Strahlenantwort in Tumorgewebe von Kopf-Hals Tumoren modulieren. Sie sollen auch in Normalgeweben überprüft werden. Es soll eine Übertragung der Erkenntnisse aus Modellsystemen auf menschliche Proben erfolgen. Dabei soll der wissenschaftliche Nachwuchs gefördert und die Systembiologie in die Strahlenforschung integriert werden. Netzwerkanalyse und Systemmodellierung: Bestimmung zentraler Netzwerkmodule und Repräsentanten, Implementierung von Nachweismethoden, Modellierung der Netzwerke. Funktionelle Charakterisierung und Validierung von Netzwerken der Strahlenantwort: Untersuchungen von in vitro und in vivo Modellsystemen, Überprüfung der Netzwerke für die Normalgewebstoxizität. Evaluation von Repräsentanten als potentielle Marker und therapeutische Zielstrukturen. Translationale Validierung von Netzwerken: Retrospektive Validierung in Tumor- und Normalgewebe, Etablierung eines prospektiven Kollektivs und prospektive Validierung in Tumor- und Normalgeweben. Im Teilprojekt werden klinischen Daten erfasst und die für die Analyse notwendigen Gewebe-, Blut- und ggfls. Speichelproben gewonnen asserviert und den entspr. Partnerinstitutionen zur Analytik übermittelt; ferner ist das Teilprojekt an der Auswertung beteiligt.
Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Arbeitsgruppe SG 1.1 Biologische Strahlenwirkungen, Biologische Dosimentrie durchgeführt. Das Ziel des Verbundprojektes ist, durch den Nachweis von spezifischen DNA-Reparaturfoci (gamma-H2AX, 53BP1, pATM, RAD51) biologische Marker für die individuelle Strahlenempfindlichkeit bzw. das individuelle Strahlenrisiko zu etablieren. Dazu wird eine zusammenhängende Untersuchung der Anwendung von RF vorgenommen: (i) RF als Marker einer chronischen Strahlenexposition, (ii) Akkumulation von RF im Niedrigdosisbereich unter Verwendung von Mausstämmen mit unterschiedlicher Reparaturkompetenz, (iii) RF als Marker der individuellen Strahlenempfindlichkeit und Eignung zur Prädiktion der Strahlenempfindlichkeit, (iv) Akkumulation von RF in der Strahlentherapie durch Monitoring der Patienten während der Therapie, (v) RF als Marker der Tumorstrahlenempfindlichkeit und Korrelation mit der Tumorkontrollwahrscheinlichkeit,(vi) RF als Marker einer genomischen Instabilität (vii) Automatisierung der RF-Detektion zur Bearbeitung großer Probenmengen. Dabei sollen junge Wissenschaftler/Innen für die Thematik Strahlenschutz und deren Umsetzung gewonnen werden. Zum Erreichen dieses Gesamtzieles, wurde ein Verbund aus universitärer Forschung (Universitätsklinikum Hamburg-Eppendorf, Universitätsklinikum Saarland, Universitätsklinikum Dresden), dem Bundesamt für Strahlenschutz sowie der Firma MEDIPAN gebildet. An kryokonservierten Lymphozyten ehemaliger Uranbergarbeiter (ehemalige Wismut AG) wird (i) die Akkumulation von RF nach chronischer Exposition nachgewiesen, (ii) die Adaptation nach chronischer Exposition durch Induktion von RF nach in vitro Bestrahlung untersucht und (iii) eine Validierung der geschätzten in vivo Strahlenexposition durch mFISH-Analyse vorgenommen. Zusammenarbeit im Verbund mit AP2, AP3 und AP7 bzgl. RF als Marker der individuellen Strahlenempfindlichkeit, mit AP6 bzgl. genomischer Instabilität, AP7 bzgl. Automatisierung. Valide Ergebnisse zur Anwendung von RF im Strahlenschutz.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universitätsmedizin der Johannes Gutenberg Universität Mainz, IMBEI Institut für Medizinische Biometrie, Epidemiologie und Informatik durchgeführt. Ziel des Vorhabens ist die Erforschung des Zusammenhangs zwischen therapeutischer Strahlenexposition im Kindesalter mit genetischen Veränderungen in Bezug auf Langzeitfolgen. Dies soll mit epidemiologischen Methoden im Rahmen einer Kohorten-Studie zur Auswertung der im DKKR erfassten Zweittumor-Ereignisse untersucht werden (AP1). Mit einer molekularepidemiologischen Fall-Kontroll-Studie werden Zellproben von Personen ohne Tumorereignis mit denen von Patienten von primären und sekundären Tumoren in Bezug auf das Genom und Genexpression vor und nach Bestrahlung verglichen (AP2). Die notwendigen statistischen Mittel werden in AP3 entwickelt. Strahlenbedingte epigenetische Veränderungen in der Genregulation werden in AP4 untersucht. Untersuchungen auf genomischer Ebene zur Erforschung spontaner und strahleninduzierter Veränderungen der Telomere und (AP 7a) dosimetrische Untersuchungen zur Ganzkörperdosisbelastung durch strahlentherapeutische Behandlungen mittels strahleninduzierter genomischer Läsionen (AP7b) sind geplant AP1: Für die Kohorte der Fälle im DKKR wird die Häufigkeit der Zweittumoren analysiert und für Patienten mit Zweittumoren und passende Kontrollen die Strahlenexposition ermittelt. In AP4 werden SNP- und Methylierungsassays sowie Pyrosequenzierung zur Untersuchung der aus AP2 bereitgestellten Proben vor und nach Bestrahlung herangezogen. In AP7a werden die Telomerlängen bei 21 Proben mittels quantitativer FiSH und anschließender durchflusszytometrischer Quantifizierung und quantitativer PCR bestimmt. Es werden Kinetiken von Dosiswirkungsbeziehungen erstellt. In AP7b wird die Strahlenbelastung von Patienten nach der Behandlung mit dem gamma-H2AX Assay ermittelt und verglichen. Zusätzlich soll die Tauglichkeit weiterer Bioindikatoren zum Nachweis sehr niedriger Dosen getestet werden.
Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von Charite - Universitätsmedizin Berlin, Institut für Pathologie durchgeführt. Identifizierung von molekularen Zielstrukturen und Signalnetzwerken, die die zelluläre Strahlenantwort in Tumorgewebe von Kopf-Hals Tumoren modulieren. Deren Relevanz wird auch in Normalgeweben überprüft. Außerdem soll eine Übertragung der Erkenntnisse aus Modellsystemen auf menschliche Proben erfolgen. Dabei soll der wissenschaftliche Nachwuchs gefördert und die Systembiologie in die Strahlenforschung integriert werden. Netzwerkanalyse und Systemmodellierung: Bestimmung zentraler Netzwerkmodule und Repräsentanten, Implementierung von Nachweismethoden, Modellierung der Netzwerke. Funktionelle Charakterisierung und Validierung von Netzwerken der Strahlenantwort: Untersuchungen von in vitro und in vivo Modellsystemen, Überprüfung der Netzwerke für die Normalgewebstoxizität. Evaluation von Repräsentanten als potentielle Marker und therapeutische Zielstrukturen. Translationale Validierung von Netzwerken: Retrospektive Validierung in Tumor- und Normalgewebe, Etablierung eines prospektiven Kollektivs und prospektive Validierung in Tumor- und Normalgeweben. Im Teilprojekt sollen insbesondere zentrale Netzwerkmodule identifiziert werden. Für diese sollen Assays zur Messung der Netzwerkstrukturen etabliert werden, und die Aktivität der Markerknoten gemessen werden. Diese dienen dann als Grundlage für eine Modellierung der Netzwerke. Die Modellvorhersagen sollen dann durch spezifische Experimente validiert werden.
Origin | Count |
---|---|
Bund | 25 |
Type | Count |
---|---|
Förderprogramm | 25 |
License | Count |
---|---|
open | 25 |
Language | Count |
---|---|
Deutsch | 25 |
Resource type | Count |
---|---|
Keine | 19 |
Webseite | 6 |
Topic | Count |
---|---|
Boden | 11 |
Lebewesen & Lebensräume | 24 |
Luft | 9 |
Mensch & Umwelt | 25 |
Wasser | 9 |
Weitere | 25 |