API src

Found 5 results.

Teilprojekt E

Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von Südzucker AG durchgeführt. In Phase 2 sollen die in Phase 1 entwickelten Bioprozesskonzepte optimiert werden, sodass das CO2 aus den Bioethanolanlagen der CropEnergies AG auch im größeren Maßstab als Grundstoff für die Synthese von Bausteinen für sog. Biopolymere, genutzt werden kann. Die benötigte Energie wird in Form von Wasserstoff, elektrischem Strom oder Licht bereitgestellt. Das 1. Jahr von Phase 2 (Phase 2A) soll als zusätzlicher Forschungszeitraum dienen und die Entwicklung der Bioprozesskonzepte aus Phase 1 vorantreiben. Die 6 parallelen Handlungsstränge werden dann nach Phase 2A reduziert, sodass im 2. und 3. Jahr (Phase 2B) maximal 2 Prozesskonzepte weiterverfolgt werden. Innerhalb des H2-getriebenen Konzepts soll das 2-Organismen-Konzept (basierend auf A.woodii und S.cerevisae) durch die Südzucker AG prozesstechnisch (Fermentationsprozess Succinatproduktion) optimiert werden. Sie wird hierbei von der BRAIN AG unterstützt. Hierfür ist es notwendig die maximalen Substrataufnahme-, Produktbildungs- und Produktausscheideraten der mikrobiologischen Systeme anhand optimierter Analyseverfahren zu ermitteln und ggf. mit prozesstechnischen Betriebsweisen, unterschiedlichen Fermentationstechnologien und gentechnischen Methoden zu verbessern, um einen robusten, skalierbaren Succinatprozess zu etablieren. Erweist sich das 2-Organismen-Konzept am Ende von Phase 2A hinsichtlich Skalierbarkeit und Effizienz als ungeeignet, wird der Schwerpunkt in Phase 2B auf die Etablierung eines 1-Organismen-Konzepts (direkte Verstoffwechselung CO2 in Succinat) verlegt. Sobald die vielversprechendsten Konzepte feststehen, werden die Arbeiten für die Produktaufarbeitung (DSP) beginnen. Die Herstellung von Kleinmengen soll möglich sein, um die Anwendung für Biokunst- und Bioverbundwerkstoffe zu bewerten. Für die Ausarbeitung eines Verfahrenskonzepts für eine Anlage im Technikumsmaßstab soll im fortgeschrittenen Projektverlauf ein Engineering-Partner beauftragt werden.

C. glutamicum als Plattform-Organismus für neue und effiziente Produktionsverfahren (BioProChemBB) - Teilvorhaben 4: Konstruktion und Charakterisierung von C. glutamicum-Stämmen zur Produktion von Succinat und Itaconat

Das Projekt "C. glutamicum als Plattform-Organismus für neue und effiziente Produktionsverfahren (BioProChemBB) - Teilvorhaben 4: Konstruktion und Charakterisierung von C. glutamicum-Stämmen zur Produktion von Succinat und Itaconat" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-1: Biotechnologie durchgeführt. Corynebacterium glutamicum wird seit Jahrzehnten erfolgreich für die biotechnologische Produktion von mehr als drei Millionen Tonnen Aminosäuren pro Jahr eingesetzt. Aufgrund der nachgewiesenen Eignung für die großtechnische Produktion hat sich C. glutamicum zu einem intensiv beforschten Modellorganismus in der Weißen Biotechnologie entwickelt. Das Ziel des ERA-IB-Verbundprojektes BioProChemBB bestand darin, C. glutamicum zu einem Plattform-Organismus weiterzuentwickeln, der nicht nur für die Produktion von Aminosäuren, sondern auch anderer industriell relevanter Produkte aus nachwachsenden Rohstoffen eingesetzt werden kann. Im Fokus von BioProChemBB standen dabei verschiedene Dicarbonsäuren, die im Rahmen einer Studie des U.S. Department of Energy als vielversprechende chemische Bausteine aus nachwachsenden Rohstoffen identifiziert worden waren. Das Ziel des vorliegenden Teilprojekts 4 war die Konstruktion und Charakterisierung von C. glutamicum-Stämmen zur Produktion von Succinat und Itaconat. Succinat ist eine Plattform- Chemikalie, aus der eine Reihe bisher petrochemisch hergestellter 'Bulk'-Chemikalien synthetisiert werden können, wie z.B. 1,4-Butandiol, Tetrahydrofuran oder g-Butyrolacton. Itaconat ist eine ungesättigte C5-Dicarbonsäure, die unter anderem für die Herstellung von Polymeren von Interesse ist und z.B. petrochemisch erzeugtes Acrylat oder Methylacrylat ersetzen könnte. Für die Succinat-Produktion sollten sowohl die aerobe als auch die anaerobe Herstellung aus Glucose sowie aus Glycerin, einem Nebenprodukt der Biodiesel-Herstellung, etabliert werden. Die entsprechenden Stämme sollten rational über 'metabolic engineering' konstruiert werden, basierend auf dem umfangreichen Wissen zum Stoffwechsel und seiner Regulation in C. glutamicum. Für die Itaconat-Produktion sollte erstmals ein bakterieller Produktionsstamm entwickelt werden, der Vorteile gegenüber dem natürlichen Produzent Aspergillus terreus bieten könnte.

C. glutamicum als Plattform-Organismus für neue und effiziente Produktionsverfahren (BioProChemBB) - Teilvorhaben 1: Konstruktion, Charakterisierung und Optimierung von Succinat-, Fumarat- und Malat-produzierenden C. glutamicum-Stämmen

Das Projekt "C. glutamicum als Plattform-Organismus für neue und effiziente Produktionsverfahren (BioProChemBB) - Teilvorhaben 1: Konstruktion, Charakterisierung und Optimierung von Succinat-, Fumarat- und Malat-produzierenden C. glutamicum-Stämmen" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Mikrobiologie und Biotechnologie durchgeführt. Corynebacterium glutamicum wird seit Jahrzehnten erfolgreich für die biotechnologische Produktion von Aminosäuren eingesetzt. Aufgrund der nachgewiesenen Eignung für die großtechnische Produktion hat sich C. glutamicum zu einem wichtigen Modellorganismus in der Weißen Biotechnologie entwickelt. Das Gesamtvorhaben des ERA-IB-Projektes zielte darauf ab, C. glutamicum in iterativen Optimierungsverfahren für die Gewinnung von Grundchemikalien und Synthesebausteinen im Sinne der Weißen Biotechnologie aus nachwachsenden Rohstoffen zu nutzen und robuste sowie kostensparende Fermentations- und 'Downstream processsing'-Verfahren zu entwickeln. Dabei standen die Produkte Succinat, Fumarat, Malat, Aspartat und Itaconat im Projektfokus. Das Ziel des Teilprojektes 1 war die Konstruktion, Analyse und iterative Optimierung von C. glutamicum-Stämmen, die mit hoher Ausbeute und hoher Produktionsrate Succinat, Fumarat und/oder Malat (bzw. deren Säuren) aus nachwachsenden Rohstoffen (Zucker) produzieren. Die zentrale Vorstufe aller drei Säuren im Zentralstoffwechsel von C. glutamicum ist Pyruvat, selbst ein attraktives Produkt als Vorstufe verschiedener Chemikalien und Polymere sowie als Bestandteil oder Zusatz in Nahrungsmitteln, Kosmetika und Pharmazeutika. Aus diesem Grund sollte auch zunächst ein C. glutamicum-Stamm entwickelt und analysiert werden, der effizient Pyruvat bildet. Succinat ist eine Plattform-Chemikalie, aus der eine Reihe bisher petrochemisch hergestellter Bulk'-Chemikalien synthetisiert werden können, wie z.B. 1,4-Butandiol, Tetrahydrofuran, Adipinsäure, g-Butyrolacton oder lineare aliphatische Esther. Fumarat wird in der Nahrungsmittelindustrie und als Ausgangsverbindung für Polymerisierungs- und Estherifizierungsreaktionen genutzt, Malat wird in der pharmazeutischen Industrie, in der Kosmetik- und in der Nahrungsmittelindustrie eingesetzt und wird wie Succinat und Fumarat als vielversprechender chemische Grundbaustein für Plattformchemikalien angesehen

Biologisch abbaubare Polyester aus 1,3-Propandiol und durch Fermentierung nachwachsender Rohstoffe produziertes Succinat

Das Projekt "Biologisch abbaubare Polyester aus 1,3-Propandiol und durch Fermentierung nachwachsender Rohstoffe produziertes Succinat" wird vom Umweltbundesamt gefördert und von Gesellschaft für Biotechnologische Forschung mbH durchgeführt. General Information: Changing shopping habits and trends to convenience products have precipitated a plastic waste disposal crisis. Relief is expected by recycling, however, due to the high cost of collection, separation and purification recycling is considered as economically ambiguous. Assuming that biodegradable plastics meet the price expectation, it would be better to use biodegradable plastics which are easily compostable. The estimated EEC market (year 1998) for such products is of significant size: approximately 4-5 x l05 tons/yr. The overall goal of the present project is the synthesis of biodegradable polyesters from two main monomers, 1,3-propanediol and succinate (produced by fermentation from renewable sources) and from other dicarboxylic acids (like terephthalic acid) used as an auxiliary monomers to modified the chemical and physical properties of the polyester. The advantages of this approach compared to polyhydoxyalkanoates or polylactides (two biodegradable polyesters that can be produced from renewable sources) are the lower cost of production and the possibility to easily modify the physical properties of the polyester to the qualities required for the article made of plastic. Therefore the main items of this project are: Production of 1,3-propanediol out of glycerol coming from the oleochemical industry (fatty acids, fatty alcohols) and rape seed oil production. Development of genetically modified micro organisms for maximal yield of 1,3-propanediol production and evaluation of their performances in fermentor up to the m3 scale and in high volumetric productivity membrane bioreactor. Production of succinic acid from starch hydrolysates using Anaerobiospirillum succiniproducens in high performance bioreactor (membrane bioreactors with optimized ratio of cell bleeding and effluent flow rates and in situ product recovery by electro dialysis), to increase the productivity and decrease the waste water treatment of the process. This fermentation is original by the fact that carbon dioxide is consumed for succinate production. Several patents have been deposited regarding the process of succinate production but the productivities reported are low due to low cell density. Development of polyesters based on 1,3-propanediol and succinic acid optimised regarding process ability and thermo-mechanical properties by means of utilization of improved polymerization-copolymerization methods and blending. Manufacture of prototypes of product using the referred optimised polymers, copolymers and blends. Biodegradation studies using various test systems including C-balances, isolation and characterization of degradative microbial consortia and involved enzymes systems (lipases, hydrolase's). Prime Contractor: Institut National des Sciences Appliquees Toulouse, Departement de Genie Biochimique, Toulouse; France.

Vorhersage und Erklaerung des Verhaltens und der Belastbarkeit von Oekosystemen unter veraenderten Umweltbedingungen - Teilprojekt N14: Umsatz von Metaboliten der Rhizosphaere in sauren Waldboeden

Das Projekt "Vorhersage und Erklaerung des Verhaltens und der Belastbarkeit von Oekosystemen unter veraenderten Umweltbedingungen - Teilprojekt N14: Umsatz von Metaboliten der Rhizosphaere in sauren Waldboeden" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Bayreuther Institut für Terrestrische Ökosystemforschung, Lehrstuhl für Ökologische Mikrobiologie (ÖMIK) durchgeführt. Oxalat, Succinat, Acetat und Formiat wurden in der Rhizosphare von sauren Waldboeden identifiziert. Die biologische Umsetzung dieser Metabolite in Waldoekosystemen ist jedoch nicht vollstaendig geklaert. Als Modell fuer organische Saeuren wurde Oxalat ausgewaehlt, und der mikrobielle Abbau von Oxalat wurde in sauren Waldboeden (im Bereich der Rhizosphaere und der Nicht-Rhizosphaere) und in pH-neutralen Boeden (Nicht-Rhizosphaere) in Bodenmikrokosmen (15-20 Grad Celsius) untersucht. Verglichen mit dem Boden aus dem Nicht-Rhizosphaerenbereich waren die mikrobiellen Populationen aus dem Bereich der Rhizosphaere in sauren Waldboeden geeigneter, Oxalat unter aeroben Bedingungen sofort umzusetzen. Der anaerobe Verbrauch von Oxalat war in sauren Waldboeden vernachlaessigbar. Ein anaerober Verbrauch von Oxalat konnte dagegen in pH-neutralen Boeden festgestellt werden. Diese Ergebnisse weisen darauf hin, dass aerobe mikrobielle Gemeinschaften am Oxalat-Umsatz im Bereich der Rhizosphaere und Nicht-Rhizosphaere in sauren Waldboeden beteiligt sind, waehrend anaerobe Aktivitaeten nicht sehr bedeutsam fuer die Umsetzung organischer Saeuren in Waldboeden sind. Da es nur wenige Informationen ueber die gesamte Mikroflora von sauren Waldboeden gibt, wurden Anreicherungen aus diesen Mikrokosmen angesetzt, um die Mikroflora dieser sauren Boeden auf einer mehr zellulaeren Ebene zu untersuchen. Es wurden zahlreiche Isolate gewonnen. Die vorherrschenden Mikroben aus sauren Waldboeden mit der Faehigkeit zum Wachstum unter anaeroben Bedingungen waren saeuretolerante, fakultative Bakterien der Gattung Enterobacter und Serratia. Weiter wurden mehrere sporenbildende Isolate gewonnen, die anscheinend eine neue Spezies von Clostridium sind, da sie einzigartige metabolische Faehigkeiten, einschliesslich der N2-Fixierung, bei niedrigen pH-Werten besitzen. Ferner wurden mehrere anaerobe, saeuretolerante Isolate vorbehaltlich als Unterspezies von Actinomyces israelii identifiziert. Diese Isolate werden weiter phylogenetisch untersucht. Eine neue obligat anaerobe Spezies von Sporomusa wurde ebenfalls aus Waldboden isoliert. Dies ist die erste Isolierung dieser Gattung aus Boeden (Sporomusa silvacetica). Aus der physiologischen Charakterisierung dieser Isolate laesst sich ableiten, dass Bakterien aus sauren Waldboeden eine hoehere Toleranz gegenueber sauren Bedingungen besitzen als Bakterien aus weniger sauren Waldboeden.

1