In dem Projekt ist es das Hauptziel, bei Photooxidationen (Gegenwart von Luftsauerstoff und Bestrahlung mit sichtbarem Licht (solare Einstrahlung und kuenstliche Lichtquelle) Abwasserreinigung und Synthese von Feinchemikalien durchzufuehren. Dazu wurden bisher Photooxidationen der toxischen Substrate Thiole, Sulfid und Phenole durchgefuehrt. Durch Verwendung von Photosensibilisatoren, die im sichtbaren Bereich absorbieren, kann eine weitgehende Mineralisierung u.a. von Phenolen (auch chlorierten Phenolen) erreicht werden. Mit der solarphotochemischen Synthese von Feinchemikalien ist jetzt begonnen worden.
In dieser Karte wird das Risiko für die Verbreitung von aktuell und potenziell sulfatsauren Böden von 0 bis 2 m Tiefe dargestellt. Wichtig: Diese Karte wurde neu überarbeitet anhand der neuen Bodenkarte BK50, für deren Erstellung insbesondere auch die hier relevanten Küstengebiete neu kartiert wurden. Daher kann es deutlich andere Einschätzungen geben als in der vorherigen Karte der Sulfatsauren Böden (Tiefenbereich 0-2 m). Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.
This dataset comprises analytical, modeled, and imaging data of eclogitic clinopyroxene inclusions hosted in diamonds from the Cullinan Mine (South Africa) and the Rassolnaya Placer (Urals Mountains, Russia). Six inclusions containing varying proportions of spongy clinopyroxene (~10–100%) were selected to investigate the mechanisms of spongy clinopyroxene formation. In addition, we provide supplementary figures to Wang et al.(2025) to which these data are supplementary to. Major element compositions of the primary cores and spongy rims of clinopyroxene were analyzed using electron probe microanalysis (EPMA). Pressure–temperature conditions were estimated using conventional thermobarometry and pMELTS modeling, which was also employed to simulate partial melting of primary clinopyroxene and the compositions of resulting melts and spongy clinopyroxene. Raman spectroscopy, FTIR, and photoluminescence data were used to assess volatile contents and structural features. Back-scattered electron (BSE) imaging and CT scans provide 2D and 3D textural constraints. Data are organized into two main tables and ten supplementary tables (Tables S1–S10), which include sulfide inclusion compositions, Raman peak data, and modeling outputs. Fifteen supplementary figures (S1–S15) include BSE images, compositional variation plots, and CT scan visualizations. Two CT scan videos. All data are provided in open file formats (.xlsx, .docx, .avi), with accompanying metadata and documentation to ensure transparency and reproducibility. Data collection took place between 2023.06 and 2025.01, and no physical sampling campaign was required, as the materials were sourced from curated diamond specimens. This dataset supports the manuscript “Formation of Spongy Clinopyroxene: Insights from Eclogitic Inclusions in Diamonds” and adheres to FAIR data principles.
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_650 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper ST16 : Trave - Mitte. Es liegen insgesamt 41551 Messwerte vor. Es liegen außerdem 16 Probenentnahmen vor (siehe Resourcen).
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_653 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper O9 : Oldesloer Trog. Es liegen insgesamt 41338 Messwerte vor. Es liegen außerdem 2 Probenentnahmen vor (siehe Resourcen).
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_652 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper O9 : Oldesloer Trog. Es liegen insgesamt 41550 Messwerte vor. Es liegen außerdem 2 Probenentnahmen vor (siehe Resourcen).
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_651 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper ST16 : Trave - Mitte. Es liegen insgesamt 41537 Messwerte vor. Es liegen außerdem 1 Probenentnahmen vor (siehe Resourcen).
Die Rekultivierung des Haldenkomplexes war fehlgeschlagen. Es soll festgestellt werden, welche der Eigenschaften des Sedimentgemisches zu diesen Schwierigkeiten gefuehrt hat. Dazu muessen sowohl seine physikalischen wie seine chemischen Eigenschaften festgestellt werden. Insbesondere soll dem Gehalt an Kohle und Sulfid im Hinblick auf ihren Einfluss auf die Standorteigenschaften besondere Aufmerksamkeit gewidmet werden. Daneben soll geprueft werden, auf welche Weise sich die aufgebrachten Meliorationsmittel auf die Standorteigenschaften der Halde auswirken.
Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.
| Origin | Count |
|---|---|
| Bund | 435 |
| Kommune | 15 |
| Land | 144 |
| Wissenschaft | 36 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 79 |
| Daten und Messstellen | 170 |
| Förderprogramm | 345 |
| Gesetzestext | 30 |
| Kartendienst | 2 |
| Taxon | 3 |
| Text | 24 |
| unbekannt | 27 |
| License | Count |
|---|---|
| geschlossen | 72 |
| offen | 535 |
| unbekannt | 6 |
| Language | Count |
|---|---|
| Deutsch | 538 |
| Englisch | 130 |
| Resource type | Count |
|---|---|
| Archiv | 96 |
| Bild | 20 |
| Datei | 30 |
| Dokument | 61 |
| Keine | 297 |
| Unbekannt | 3 |
| Webdienst | 7 |
| Webseite | 288 |
| Topic | Count |
|---|---|
| Boden | 444 |
| Lebewesen und Lebensräume | 486 |
| Luft | 384 |
| Mensch und Umwelt | 613 |
| Wasser | 428 |
| Weitere | 514 |