API src

Found 858 results.

Related terms

Grundwassergütedaten Grundwasserbericht 2022 Niedersachsen

Die FeatureClass enthält die aktuellen Konzentrationen ausgewählter Grundwassergüteparameter für die Grundwassermessstellen der Messprogramme Wasserrahmenrichtlinie-Güte und Grundwassergüte. Sie dient der Darstellung der Gütedaten im Rahmen des Grundwasserberichts Niedersachsen. Die Darstellung erfolgt in separaten Layern für die einzelnen Güteparameter. Durch Klick auf eine Messstelle können weitere Informationen zum Parameter bzw. zur Messstelle abgerufen werden:- Parameterdatenblatt – Datenblatt mit tabellarischer Darstellung der Jahresmittelwerte und Zeitreihe der Konzentrationsentwicklung.- Messstellenbericht - Aktuellste Konzentrationen der an der Messstelle bestimmten Güteparameter.- Messstellenprofil – Informationen zum Ausbau der Messstelle. Die FeatureClass enthält die aktuellen Konzentrationen ausgewählter Grundwassergüteparameter für die Grundwassermessstellen der Messprogramme Wasserrahmenrichtlinie-Güte und Grundwassergüte. Sie dient der Darstellung der Gütedaten im Rahmen des Grundwasserberichts Niedersachsen. Die Daten werden in separaten Layern für die einzelnen Güteparameter angezeigt. Im Einzelnen sind die folgenden Layer enthalten: Gwb_Al - Aluminium, Gwb_NH4 - Ammonium, Gwb_AOX - AOX, Gwb_As - Arsen, Gwb_Pb - Blei, Gwb_KS8.2 - Basenkapazität pH 8,2, Gwb_B - Bor, Gwb_Ca - Calcium, Gwb_Cd - Cadmium, Gwb_Cr - Chrom, Gwb_Cl - Chlorid, Gwb_CN - Cyanid, Gwb_DOC – Gelöster organischer Kohlenstoff (DOC), Gwb_Fe - Eisen, Gwb_F - Fluorid, Gwb_K - Kalium, Gwb_Cu - Kupfer, Gwb_LHKW - LHKW, Gwb_LF - elektrische Leitfähigkeit, Gwb_Mg - Magnesium, Gwb_Mn - Mangan, Gwb_Na -Natrium, Gwb_Ni - Nickel, Gwb_NO3 - Nitrat, Gwb_NO2 - Nitrit, Gwb_PO4 - Ortho-Phosphat, Gwb_PSM - Pflanzenschutzmittel (PSM), Gwb_pH - pH-Wert, Gwb_Hg - Quecksilber, Gwb_SAK254 -SAK 254 / UV-Adsorption, Gwb_SAK436 - SAK 436 / Adsorption von sichtbarem Licht, Gwb_O2 - Sauerstoff, Gwb_Si - Silicium, Gwb_SO4 - Sulfat, Gwb_KS43 - Säurekapazität pH 4,3, Gwb_Zn - Zink.

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - unterhalb von 2 m Tiefe (WMS Dienst)

In dieser Karte wird das Risiko für die Verbreitung von potenziell sulfatsauren Böden unterhalb von 2 m Tiefe bis zur Basis der holozänen Sedimente dargestellt. Wichtig: Diese Karte wurde im Gegensatz zu der Karte für den Tiefenbereich 0-2 m in 2018 nicht neu überarbeitet, aber es werden auch hier die gleichen, neuen Legenden verwendet. Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Für diese Karte gibt es keine Werte östlich von Cuxhaven und Bremerhaven, da deren Datengrundlage, die Geologische Küstenkarte von Niedersachsen, dort ebenfalls endet. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - Tiefenbereich 0-2 m (WMS Dienst)

In dieser Karte wird das Risiko für die Verbreitung von aktuell und potenziell sulfatsauren Böden von 0 bis 2 m Tiefe dargestellt. Wichtig: Diese Karte wurde neu überarbeitet anhand der neuen Bodenkarte BK50, für deren Erstellung insbesondere auch die hier relevanten Küstengebiete neu kartiert wurden. Daher kann es deutlich andere Einschätzungen geben als in der vorherigen Karte der Sulfatsauren Böden (Tiefenbereich 0-2 m). Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - unterhalb von 2 m Tiefe

In dieser Karte wird das Risiko für die Verbreitung von potenziell sulfatsauren Böden unterhalb von 2 m Tiefe bis zur Basis der holozänen Sedimente dargestellt. Wichtig: Diese Karte wurde im Gegensatz zu der Karte für den Tiefenbereich 0-2 m in 2018 nicht neu überarbeitet, aber es werden auch hier die gleichen, neuen Legenden verwendet. Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Für diese Karte gibt es keine Werte östlich von Cuxhaven und Bremerhaven, da deren Datengrundlage, die Geologische Küstenkarte von Niedersachsen, dort ebenfalls endet. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Sulfatsaure Böden in niedersächsischen Küstengebieten 1 : 50 000 - Tiefenbereich 0-2 m

In dieser Karte wird das Risiko für die Verbreitung von aktuell und potenziell sulfatsauren Böden von 0 bis 2 m Tiefe dargestellt. Wichtig: Diese Karte wurde neu überarbeitet anhand der neuen Bodenkarte BK50, für deren Erstellung insbesondere auch die hier relevanten Küstengebiete neu kartiert wurden. Daher kann es deutlich andere Einschätzungen geben als in der vorherigen Karte der Sulfatsauren Böden (Tiefenbereich 0-2 m). Die erläuternden Geofakten 24 befinden sich derzeit noch in Überarbeitung. Sogenannte „Sulfatsaure Böden“ kommen in Niedersachsen vor allem im Bereich der Küstengebiete vor. Diese Bezeichnung umfasst sowohl Böden als auch tiefergelegene Sedimente sowie Torfe. Charakteristisch für die verschiedenen sulfatsauren Materialien (SSM) sind hohe, geogen bedingte Gehalte an reduzierten anorganischen Schwefelverbindungen. Ursprünglich gelangte der Schwefel in Form von Sulfationen aus dem Meerwasser in die holozänen Ablagerungen. Aufgrund wassergesättigter, anaerober Bedingungen wurden die Sulfationen zu Sulfid reduziert und vor allem als Pyrit und FeS über lange Zeit wegen konstant hoher Grundwasserstände konserviert. Typische SSM sind tonreiche Materialien mit höheren Gehalten an organischer Substanz und/oder groben Pflanzenresten sowie über- und durchschlickte Niedermoortorfe. Bei Entwässerung und Belüftung dieser Materialien kommt es zur Oxidation der Sulfide und zur Bildung von Schwefelsäure, wenn sie z. B. im Rahmen von Bauvorhaben entwässert oder aus dem natürlichen Verbund herausgenommen werden. Aus potenziell sulfatsauren Böden können so aktuell sulfatsaure Böden werden. Das hohe Gefährdungspotenzial ergibt sich durch: • extreme Versauerung (pH < 4,0) des Baggergutes mit der Folge von Pflanzenschäden, • deutlich erhöhte Sulfatkonzentrationen im Bodenwasser bzw. Sickerwasser, • erhöhte Schwermetallverfügbarkeit bzw. -löslichkeit und erhöhte Konzentrationen im Sickerwasser; • hohe Korrosionsgefahr für Beton- und Stahlkonstruktionen. Zur Gefahrenabwehr bzw. -minimierung bedürfen in den betroffenen Gebieten alle Baumaßnahmen mit Bodenaushub oder Grundwasserabsenkungen einer eingehenden fachlichen Planung und Begleitung. Dabei ist zu beachten, dass die Verbreitung der Eisensulfide in der Fläche und in der Tiefe oft eher fleckenhaft ist. Daher sollten die Identifikation von aktuell und potenziell SSM sowie Bauplanung und -begleitung nur durch qualifiziertes bodenkundliches Fachpersonal vorgenommen werden. Aufgrund der oft geringen Tragfähigkeit dieser Böden und insbesondere der Torfe müssen bei Baumaßnahmen relativ große Baugruben ausgehoben werden, so dass in kurzer Zeit viel SSM als Aushubmaterial anfällt. Zudem laufen Oxidation und Versauerung oft sehr schnell ab. Diese Auswertungskarte kann schon bei Planung und Ausweisung von Gebieten, z. B. im Rahmen von Trassenplanungen, Flächennutzungs- und Bebauungsplänen etc., genutzt werden. Konkrete Handlungsanweisungen zu Bauplanung und -begleitung sowie zu Beprobung und Laboranalyse des umzulagernden SSM finden sich in den Geofakten 25. Achtung: Die Karte ist nur die Grundlage für eine konkrete Erkundung am Ort der Baumaßnahme.

Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Sulfatgehalt (WMS Dienst)

Die Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Sulfatgehalt zeigt die Auswertung einer repräsentativen Auswahl von Sulfatkonzentrationen aus der Labordatenbank des LBEG. Die über einen Zeitraum von 1967 bis 2000 erhobenen Daten wurden zweifach gemittelt. Bei Grundwasser-Messstellen mit Mehrfachanalysen wurden Mittelwerte der jeweils vorliegenden Untersuchungsergebnisse gebildet. Zusätzlich wurden die Werte aller Probenahmestellen in einem Radius von 2000 m einer weiteren Mittelwertbildung unterzogen. Die Einteilung der Klassen erfolgt unter Berücksichtigung des Geringfügigkeitsschwellenwertes (GFS) bzw. des Grenzwertes der Trinkwasserverordnung (TVO) von 240 mg/l sowie des TVO-Wertes von 500 mg/l bei geogen bedingter Überschreitung. Erhöhte Konzentrationen, die eindeutig auf punktförmige anthropogene Einträge (z.B. Altdeponien) zurückzuführen sind, werden im Rahmen dieser Übersichtskarte nicht wiedergegeben. Die Sulfatgehalte sind in Tiefenstufen ohne Bezug zur lokalen hydrogeologischen Situation dargestellt. Die Stabdiagramme im rechts gezeigten Beispiel spiegeln Ergebnisse für die Tiefenstufen bis 20 Meter, über 20 bis 50 Meter, über 50 bis 100 Meter und über 100 bis 200 Meter wieder. Ein Vergleich von Werten ist daher ohne Berücksichtigung der jeweiligen hydrogeologischen Situation (z.B. hydrogeologischer Stockwerksbau) ebenso wie die Heranziehung der Daten für Detailuntersuchungen nicht zulässig. Sehr hohe Sulfatkonzentrationen sind z. T. auf geogene Einflüsse zurückzuführen: Die höchsten Konzentrationen für Sulfat finden sich in Niedersachsen im Bereich der Küstenversalzung (Ostfriesische Küste und nördlich des Jadebusens). Ebenfalls sehr hohe geogene Sulfatkonzentrationen gibt es im Verbreitungsgebiet gipshaltiger Gesteine (Oberer Buntsandstein, Mittlerer Muschelkalk, Mittlerer Keuper, Zechstein), wo im Grundwasser Sulfatkonzentrationen von mehr als 1000 mg/l erreicht werden. Die Oxidation von Sulfiden (z.B. Pyrit) führt ebenfalls zu hohen Sulfatgehalten. Im nördlichen Bereich von Hannover werden Konzentrationen von 100 – 400 mg/l erreicht. Eine Ursache dafür ist die Oxidation von Pyritmineralen aus Gesteinen der Kreidezeit. Erhöhte Eisengehalte und niedrige pH-Werte sind weitere Folgen dieser Reaktion. Sehr niedrige Sulfatgehalte mit wesentlich weniger als 10 mg/l sind meist auf Sulfatreduktion zurückzuführen, wobei bei dieser Reaktion häufig organisches Material im Gestein Oxidationsprozessen unterliegt. Das Grundwasser in den holozänen Ablagerungen östlich und südöstlich des Jadebusens ist zu einem großen Teil durch Sulfatreduktion verändert.

Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Sulfatgehalt

Die Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Sulfatgehalt zeigt die Auswertung einer repräsentativen Auswahl von Sulfatkonzentrationen aus der Labordatenbank des LBEG. Die über einen Zeitraum von 1967 bis 2000 erhobenen Daten wurden zweifach gemittelt. Bei Grundwasser-Messstellen mit Mehrfachanalysen wurden Mittelwerte der jeweils vorliegenden Untersuchungsergebnisse gebildet. Zusätzlich wurden die Werte aller Probenahmestellen in einem Radius von 2000 m einer weiteren Mittelwertbildung unterzogen. Die Einteilung der Klassen erfolgt unter Berücksichtigung des Geringfügigkeitsschwellenwertes (GFS) bzw. des Grenzwertes der Trinkwasserverordnung (TVO) von 240 mg/l sowie des TVO-Wertes von 500 mg/l bei geogen bedingter Überschreitung. Erhöhte Konzentrationen, die eindeutig auf punktförmige anthropogene Einträge (z.B. Altdeponien) zurückzuführen sind, werden im Rahmen dieser Übersichtskarte nicht wiedergegeben. Die Sulfatgehalte sind in Tiefenstufen ohne Bezug zur lokalen hydrogeologischen Situation dargestellt. Die Stabdiagramme im rechts gezeigten Beispiel spiegeln Ergebnisse für die Tiefenstufen bis 20 Meter, über 20 bis 50 Meter, über 50 bis 100 Meter und über 100 bis 200 Meter wieder. Ein Vergleich von Werten ist daher ohne Berücksichtigung der jeweiligen hydrogeologischen Situation (z.B. hydrogeologischer Stockwerksbau) ebenso wie die Heranziehung der Daten für Detailuntersuchungen nicht zulässig. Sehr hohe Sulfatkonzentrationen sind z. T. auf geogene Einflüsse zurückzuführen: Die höchsten Konzentrationen für Sulfat finden sich in Niedersachsen im Bereich der Küstenversalzung (Ostfriesische Küste und nördlich des Jadebusens). Ebenfalls sehr hohe geogene Sulfatkonzentrationen gibt es im Verbreitungsgebiet gipshaltiger Gesteine (Oberer Buntsandstein, Mittlerer Muschelkalk, Mittlerer Keuper, Zechstein), wo im Grundwasser Sulfatkonzentrationen von mehr als 1000 mg/l erreicht werden. Die Oxidation von Sulfiden (z.B. Pyrit) führt ebenfalls zu hohen Sulfatgehalten. Im nördlichen Bereich von Hannover werden Konzentrationen von 100 – 400 mg/l erreicht. Eine Ursache dafür ist die Oxidation von Pyritmineralen aus Gesteinen der Kreidezeit. Erhöhte Eisengehalte und niedrige pH-Werte sind weitere Folgen dieser Reaktion. Sehr niedrige Sulfatgehalte mit wesentlich weniger als 10 mg/l sind meist auf Sulfatreduktion zurückzuführen, wobei bei dieser Reaktion häufig organisches Material im Gestein Oxidationsprozessen unterliegt. Das Grundwasser in den holozänen Ablagerungen östlich und südöstlich des Jadebusens ist zu einem großen Teil durch Sulfatreduktion verändert.

Optimierung des Rückbaus/Abbaus von Gebäuden zur Rückgewinnung und Aufbereitung von Baustoffen unter Schadstoffentfrachtung (insbes. Sulfat) des RC-Materials

Bau- und Abbruchabfälle stellen in Deutschland über die Hälfte des Gesamtabfallaufkommens dar. Durch eine verstärkte Nutzung des in diesen Materialströmen enthaltenen Wertstoffpotentials, kann ein wichtiger Beitrag zur Schonung natürlicher Ressourcen geleistet werden. Ein hochwertiges Recycling von Bauschutt kann durch die möglichst sortenreine Erfassung und Behandlung der anfallenden Materialien erzielt werden. Die vorliegende Studie erfasst und beschreibt existierende Abbruch- und Bauschuttaufbereitungstechniken und leitet anhand der ökobilanziellen Bewertung verschiedener Szenarien für den selektiven und nicht selektiven Abbruch Handlungsempfehlungen für eine optimierte Vorgehensweise zum Abbruch, zur Bauschuttaufbereitung und somit zur umweltverträglichen Gewinnung hochwertiger RC-Gesteinskörnungen ab. Der Schwerpunkt liegt bei diesen Betrachtungen auf der Hochwertigkeit der RC-Gesteinskörnungen durch Sulfatentfrachtung. Da in Zukunft ein massiver Anstieg des Anteils an Gips und somit erhöhte Sulfatwerte im anfallenden Bauschutt zu erwarten sind, sollten Gipsbaustoffe schon beim Rückbau durch die Nutzung selektiver Vorgehensweisen separiert werden. Diese erweisen sich beim Abbruch und Rückbau für jedes der in der Studie bewerteten Szenarien zudem als ökologisch vorteilhafter. Veröffentlicht in Texte | 05/2013.

Geo-Engineering

In dieser Arbeit wird der Einfluss von sogenanntem stratosphärischen Geoengineering auf die Ozonschicht der Stratosphäre mit globalen Zirkulationsmodellen untersucht. Stratosphärisches Geoengineering soll einen globalen Abkühlungseffekt erzeugen, welcher der globalen Erwärmung entgegenwirken soll. Momentane Schätzungen gehen davon aus, dass dazu jährliche Injektionen in der Größenordnung von 1-10 Mt Schwefel notwendig sind. Diesen Schätzungen entsprechend werden Sensitivitätsstudien durchgeführt, die den Einfluss auf die Ozonschicht in Funktion der Injektionsrate und einiger Schlüsselparametern zu quantifizieren suchen. Die Ergebnisse zeigen einen sehr komplexen Zusammenhang zwischen den beteiligten Prozessen. Insbesondere dem Zusammenspiel zwischen den Strahlungseigenschaften des Sulfataerosols, der stratosphärischen Zirkulation, den Polarwirbeln, und der Ozon- und Aerosolchemie scheint eine Schlüsselrolle zuzukommen. Unsere Berechnungen ergeben, dass über den Subtropen durch chemische Effekte mit einer Zunahme der Ozonschicht um bis zu 5% zu rechnen ist, während über den Polargebieten und den gemäßigten Breiten vorwiegend eine Abnahme der Ozonkonzentration um bis zu 10% zu erwarten ist. Die Resultate sind jedoch mit großen Unsicherheiten behaftet, die eine korrekte Quantifikation der Implikationen des Geoengineering auf die Ozonschicht mittels Modellexperimenten als wenig wahrscheinlich erscheinen lassen. Veröffentlicht in Texte | 25/2016.

Papier-Pappe\Kraftliner-EU-2000

Wellpappenrohpapiererzeugung Europa (Brauner Kraftliner): Kiefern- oder Fichtenholz wird nach dem Kraft- (oder Sulfat)-Verfahren mit Natronlauge unter Zusatz von Sulfid aufgeschlossen. In manchen Fabriken wird der Sulfataufschluß nicht sehr weit getrieben und es wird eine Sauerstoffdelignifizierung angeschlossen. Die Aufschlußlauge wird zur Energiegewinnung und Chemikalienrückgewinnung reduzierend verbrannt, so daß Sulfide und Natronlauge (nach Kaustifizierung) zurückgewonnen werden. Der Zellstoff wird ungebleicht eingesetzt, woraus die typische braune Farbe und hohe Festigkeiten resultieren. Zellstoff- und Papiererzeugung sind in den Anlagen integriert, eine Zwischentrocknung des Zellstoffs entfällt dadurch. In Europa wird in den meisten Fabriken zusätzlich krafthaltiges Altpapier (aus Importen) als weiterer Einsatzstoff verwendet. Es wird in Wasser aufgeschlagen und durch mechanische Prozesse von Fremdstoffen befreit. Der Zellstoff wird in Refinern gemahlen und mit Zusätzen (Stärke) über ein Langsieb zu einer Papierbahn geformt. Durch Pressen wird sie auf 50 % TG gebracht und mit dampfbeheizten Trockenzylindern getrocknet (ca. 96 % TG). Die Oberfläche des Papiers wird in der Papiermaschine mit einer Stärkelösung geleimt. Die Daten gelten für Österreich, Finnland, Frankreich, Norwegen, Portugal und Schweden, prinzipiell in gleicher Form in USA und Canada. Allokation: keine Genese der Daten: Die Daten repräsentieren den Durchschnitt von 90 % der europäischen Kraftlinerproduktion und entsprechen dem Stand von 1994. Sie wurden durch ECOBILAN (Paris) im Auftrag dreier europäischer Verbände durch Befragung der Hersteller ermittelt und validiert. Systemgrenzen sind die Werke. Beim Energieverbrauch ist offensichtlich die Ablaugenverbrennung im Gegensatz zur Rindeverbrennung in den Werken nicht berücksichtigt worden. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Papier/Pappe

1 2 3 4 584 85 86