API src

Found 146 results.

Related terms

Power-to-Liquids

⁠ PtL ⁠ fuels are broadly recognized as an important option to make aviation CO 2 neutral, and the industrial production of PtL fuels has moved within reach. The updated version of the background paper reviews the basic principles of PtL production routes and draws a comparison with competing fuel options based on sustainability criteria. In order to produce sustainable PtL fuels in the required quantities, it is necessary to use renewable electricity from solar and wind energy, alongside extensively available renewable carbon sources. Furthermore, economic considerations, the technical suitability of PtL fuels, the influence of synthetic fuels on pollutant emissions and high-altitude climate impact, as well as a potential ramp-up of PtL production capacities are discussed. Veröffentlicht in Hintergrundpapier.

Biomasse nachhaltig bewirtschaften - ökologische Grenzen der Flächennutzung einhalten!

UBA-Position: Nahrungsmittel haben Vorrang vor Energieproduktion Die Nutzungskonkurrenzen um Landflächen verschärfen sich. Ein entscheidender Auslöser dafür ist die steigende Nachfrage nach Biomasse für Nahrungsmittel, Energie oder Baustoffe. Gleichzeitig ist die globale Landnutzung von gravierenden ökologischen und sozialen Problemen gekennzeichnet. Hunger und Ernährungsunsicherheit sind ein ungelöstes Problem, die Bodendegradation schreitet voran, Wasserressourcen werden knapper. Das Umweltbundesamt ist darum der Ansicht, dass die energetische Nutzung von Anbaubiomasse, inklusive Rohholz, nicht weiter ausgebaut werden sollte. „Die Landnutzung ist global noch weit davon entfernt, nachhaltig zu sein. Böden werden übernutzt, Natur wird zerstört und gleichzeitig hungern 1 Milliarde Menschen. Diese Missstände müssen dringend beseitigt werden“, erklärt Jochen Flasbarth bei der Vorstellung des Positionspapieres „Globale Landflächen und Biomasse nachhaltig und ressourcenschonend nutzen“. Nach wissenschaftlichen Erkenntnissen des Umweltbundesamtes sollte die Energieversorgung in Deutschland auf längere Sicht weitgehend auf Anbaubiomasse verzichten. Dies gilt sowohl für die Strom- und Wärmeversorgung als auch für den Verkehrsbereich. Insbesondere für den Verkehr sollten andere Wege verfolgt werden. So kann die Effizienz herkömmlicher Antriebe verbessert und die Entwicklung synthetischer Kraftstoffe aus Strom von Wind- und Photovoltaikanlagen stärker voran getrieben werden. Jochen Flasbarth: „Wir begrüßen den Vorschlag der EU-Kommission, die bereits eingeführte Quote für Biosprit aus Anbaubiomasse einzufrieren. Mittelfristig sollte die Quote auf ein Niveau gebracht werden, das ausschließlich durch unkritische Rohstoffe erreicht werden kann.“ Generell empfiehlt das Umweltbundesamt schrittweise auf Anbaubiomasse der üblichen Energiepflanzen wie Mais, Raps  oder Palmöl zu verzichten. Förderungswürdig sind stattdessen Technologien und Konzepte, die Alt- und Reststoffe wie Lebensmittel- oder Holzabfälle zuerst stofflich und erst im Anschluss daran energetisch nutzen. Entscheidend für die Einschätzung des Umweltbundesamtes ist die weltweit nur begrenzt zur Verfügung stehende Fläche für die landwirtschaftliche Produktion. Diese müsse in erster Linie für die Ernährung genutzt werden. „Selbst wenn die Produktivität in der Landwirtschaft steigt und nur ökologisch vertretbar gewirtschaftet wird, brauchen wir die global verfügbare Fläche mittelfristig zur Ernährung von mehr als 9 Milliarden Menschen. Für den Anbau von ⁠ Biomasse ⁠ zur energetischen Nutzung steht daher nur in geringem Umfang Land zur Verfügung.“ Sollten Ackerflächen nicht für Nahrungsmittel benötig werden, kann es sinnvoll sein für bestimmte Zwecke Energiepflanzen anzubauen, zum Beispiel weil derzeit noch keine alternativen Lösungen absehbar sind. Ob Flächen für andere Zwecke als den Nahrungsmittelanbau genutzt werden können, hängt auch davon ab, wie fleischreich die Ernährung ist. Nimmt der Fleischkonsums weiter zu, vergrößert sich auch der Flächenbedarf für Futtermittel. Eine pflanzlichere Ernährungsweise in den Industrie- und Schwellenländern lieferte darum einen entscheidenden Beitrag, um die Ernährung der Weltbevölkerung zu sichern. Um dieses Ziel wirklich erreichen zu können, ist es notwendig, die Bodendegradation zu stoppen, die Nahrungsmittelverschwendung zu reduzieren sowie Landgrabbing und Spekulation mit Agrarrohstoffen zu regulieren. Generell und insbesondere dort, wo Biomasse für Energie oder Kraftstoff hergestellt wird, ist es notwendig ökologische und soziale Mindeststandards einzuhalten. Dafür ist eine funktionierende Zertifizierung erforderlich, die auf Basis anspruchsvoller Kriterien, die umweltverträgliche Produktion nachweist.

Sachverständigenbericht: Alternative Kraftstoffe könnten fossile Kraftstoffe in Europa bis 2050 ersetzen

Alternative Kraftstoffe haben das Potenzial, fossile Energiequellen im Verkehrssektor allmählich zu ersetzen. So könnte bis 2050 ein nachhaltiges Verkehrssystem geschaffen werden. Zu diesem Ergebnis kommt ein Bericht, den die Sachverständigengruppe zum Thema Kraftstoffe der Zukunft im Verkehrssektor am 25. Januar 2011 der Europäischen Kommission vorlegte. Die EU sollte bis 2050 für eine vom Öl unabhängige und weitgehend CO2-neutrale Energieversorgung des Verkehrssektors sorgen, um die daraus resultierenden Umweltauswirkungen zu verringern und die Energieversorgung dauerhaft zu sichern. Die Sachverständigengruppe hat nun erstmals einen umfassenden Ansatz für den gesamten Sektor entwickelt. Der erwartete Energiebedarf aller Verkehrsträger könnte durch eine Kombination aus Elektrizität (Batterien oder Wasserstoff/Brennstoffzellen) und Biokraftstoffen als Hauptoptionen, synthetischen Kraftstoffen (zunehmend aus erneuerbaren Ressourcen) als Brückenlösung, Methan (Erdgas und Biomethan) als zusätzlichem Kraftstoff und LPG (Flüssiggas) als Ergänzungslösung gedeckt werden.

Markt für Schwefel

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of natural gas production (CA-AB): Canadian data completed with german data. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of natural gas production (DE): Data in environmental report contains no information on technology. technologyComment of natural gas production (RoW): The data describes an average onshore technology for natural gas to 13% out of combined oil gas production. Natural gas is assumed to 20% sour. Leakage in exploitation is estimated at 0.38% and production 0.12%. It is further assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (RU): The data describes an average onshore technology for natural gas with a share of 4% out of combined oil gas production and 96% from mere natural gas production. Natural gas is assumed to 20% sour. It is assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (US): US data (NREL) for emissions completed with german data. Emissions from NREL include combined production (petroleumm and gas) and off-shore production. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of petroleum refinery operation (CH): Average data for the used technology. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of sulfur production, petroleum refinery operation (Europe without Switzerland): The technology level in Europe applied here represents a weighted average of BREF types II (62%), III (29%), IV (9%) refineries; API 35; sulfur content 1.03%. technologyComment of sulfur production, petroleum refinery operation (PE): The technology represents BREF type II refinery; API 25; sulfur content 0.51% technologyComment of sulfur production, petroleum refinery operation (BR): The technology represents BREF type II refinery; API 25; sulfur content 0.57% technologyComment of sulfur production, petroleum refinery operation (ZA): The technology represents a weighted average of BREF types II and III refineries; API 35; sulfur content 0.7% technologyComment of sulfur production, petroleum refinery operation (CO): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 0.56% technologyComment of sulfur production, petroleum refinery operation (IN): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 1.39% technologyComment of sulfur production, petroleum refinery operation (RoW): This dataset represents the prevailing technology level in Europe, this is a weighted average of BREF complexity types II (62%), III (29%), IV (9%) refineries (see BREF document, European Commission, 2015); API 35; sulfur content 1.03%. Reference(s): European Commission (2015) Best Available Techniques (BAT) Reference Document (BREF) for the Refining of Mineral Oil and Gas, Industrial Emissions Directive 2010/75/EU Integrated Pollution Prevention and control, accessible online at http://eippcb.jrc.ec.europa.eu/reference/BREF/REF_BREF_2015.pdf, February 2019 technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).

Markt für 1-Butanol

technologyComment of hydroformylation of propylene (RER, RoW): In the oxo reaction (hydroformylation), carbon monoxide and hydrogen are added to a carbon – carbon double bond in the liquid phase in the presence of catalyst (hydrocarbonyls or substituted hydrocarbonyls of Co, Rh, or Ru). In the first reaction step aldehydes are formed with one more C-atom than the original olefins. For olefins with more than two C-atoms, isomeric aldehyde mixtures are normally obtained. In the case of propylene these consist of 1-butanal and 2-methylpropanal. imageUrlTagReplace600920a3-5103-4466-9c05-fd1d8ed0d89c There are several variations of the hydroformylation process, the differences being in the reaction conditions (pressure, temperature) as well as the catalyst system used. The classic high-pressure process exclusively used until the beginning of the 1970s operates at pressures of 20 – 30 MPa (200 – 300 bar) CO/H2 and temperatures of 100 – 180 °C. The catalyst is Co. It leads to about 75 % 1-butanol and about 25 % 2-methyl-1-propanol. The new process developments of the past few years have led to a clear shift in the range of products. The processes operating at relatively low pressures (1 – 5 MPa , 10 – 50 bar) use modified Rh-catalysts. The isomeric ratios achieved are about 92 : 8 or 95 : 5 1-butanol to 2-methyl-1-propanol. However, by the use of unmodified Rh the percentage of 2-methyl-1-propanol can be increased to about 50 %. Catalytic hydrogenation of the aldehydes leads to the formation of the corresponding alcohols. As only primary alcohols can be obtained via the oxo synthesis, it is not possible to produce 2-butanol and 2-methyl-2-propanol by this process. Reference: Hahn, H., Dämkes, G., Ruppric, N.: Butanols. In: Ullmann's Encyclopedia of In-dustrial Chemistry, Seventh Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. Wiley InterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/ technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).

Markt für Methanol

technologyComment of methanol production (GLO): For normal methanol synthesis, reforming is performed in one step in a tubular reactor at 850 – 900 °C in order to leave as little methane as possible in the synthesis gas. For large methanol synthesis plants, Lurgi has introduced a two-step combination (combined reforming process) that gives better results. In the primary tubular reformer, lower temperature (ca. 800 °C) but higher pressure (2.5-4.0 MPa instead of 1.5-2.5 MPa) are applied. More recently, Lurgi developed another two-step gas production scheme. It is based on catalytic autothermal reforming with an adiabatic performer and has economical advantages for very large methanol plants. At locations where no carbon dioxide is available most of the methanol plants are based on the following gas production technologies, depending on their capacities: steam reforming for capacities up to 2000 t d-1 or combined reforming from 1800 to 2500 t d-1 (Ullmann 2001). For the energy and resource flows in this inventory a modern steam reforming process was taken as average technology. To estimate best and worst case values, also values from combined reforming and autothermal reforming were investigated. Methanol produced using a low pressure steam reforming process (ICI LPM) accounts for approximately 60% of the world capacity (Synetix 2000a). Besides steam reforming, combined reforming has gained importance due to the production of methanol in large plants at remote locations. The reaction of the steam-reforming route can be formulated for methane, the major constituent of natural gas, as follows: Synthesis gas preparation: CH4 + H2O → CO + 3 H2; ΔH = 206 kJ mol-1 CO + H2O → CO2 + H2; ΔH = - 41 kJ mol-1 Methanol synthesis: CO + 2 H2 → CH3OH; ΔH = -98 kJ mol-1 CO2 + 3 H2 → CH3OH + H2O; ΔH = -58 kJ mol-1 For an average plant the total carbon efficiency is around 75%, 81% for the synthesis gas preparation and 93% for the methanol synthesis (Le Blanc et al. 1994, p. 114). For steam reformers usually a steam to carbon ratio of 3:1 to 3.5:1 is used. As methanol production is a highly integrated process with a complicated steam system, heat recovery and often also internal electricity production (out of excess steam), there were only data of the efficiency and energy consumption of the total process available. Therefore the process was not divided into a reforming process, a synthesis process and a purification process for estimating the energy and resource flows. Also the energy and resource flows in the methanol production plants are site specific (dependent on the local availability of resources such as CO2, O2, or electricity). In this inventory typical values for a methanol plant using steam-reforming technology were used. The main resource for methanol production is natural gas, which acts as feedstock and fuel. A natural gas based methanol plant consumes typically 29-37 MJ (LHV) of natural gas per kg of methanol. This gas is needed as feedstock for the produced methanol (20 MJ kg-1 LHV) and also used as fuel for the utilities of the plant. From the converted feed, 1 kg methanol and 0.06 kg hydrogen is yielded. It was assumed that the purged hydrogen was also burned in the furnace. The only emission to air considered from burning hydrogen is NOX. The energy amount generated is not considered, because the process of the furnace is specified for natural gas as fuel. The NOX emissions of the hydrogen burning were therefore calculated separately. References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).

Detailed analyses of the system comparison of storable energy carriers from renewable energies

In the course of the transformation to a greenhouse gas-neutral society in the second half of the 21st century, the use of synthetic energy carriers based on renewable electricity or biomass is under discussion. This project evaluates the environmental impacts of technical and logistical options for the generation of such energy carriers on the basis of environmental impact categories such as global warming potential, acidification or land use. The production of five products (Fischer-Tropsch fuels, methanol, synthetic natural gas, biomethane and hydrogen) was examined on the basis of various process steps/procedures and their current and future technical data. By using regional factors for Germany, Europe and the Mediterranean region - like the availability of renewable energy sources such as wind or PV and of raw materials such as carbon or water as well as transport routes to Germany - these processes were combined to form supply paths for these energy carriers. Using the life cycle assessment method, the environmental effects were analysed for today and 2050. In addition, the costs for plant construction and operation were estimated. As a result, synthetic energy carriers generally have a significantly lower global warming potential than today's fossil reference products due to the use of renewable energies. However, the production of electricity generation plants and associated economic processes - such as steel and cement production - can still make a relevant contribution to the global warming potential if they are not also greenhouse neutral. At the same time, it is this production of the necessary plants that leads to (sometimes significantly) increased burdens compared with the fossil reference in almost all other impact categories, most notably in terms of water and land use. This study therefore also provides indications of which environmental impacts must be further reduced in the future. Quelle: Forschungsbericht

System comparison of storable energy carriers from renewable energies

In the course of the transformation to a greenhouse gas-neutral society in the second half of the 21st century, the use of synthetic energy carriers based on renewable electricity or biomass is under discussion. This project evaluates the environmental impacts of technical and logistical options for the generation of such energy carriers on the basis of environmental impact categories such as global warming potential, acidification or land use. The production of five products (Fischer-Tropsch fuels, methanol, synthetic natural gas, biomethane and hydrogen) was examined based on various process steps/procedures and their current and future technical data. By using regional factors for Germany, Europe, and the Mediterranean region - like the availability of renewable energy carriers such as wind or PV and of raw materials such as carbon or water as well as transport routes to Germany - these processes were combined to form supply paths for these energy carriers. Using the method of life cycle assessment, the environmental effects were analysed for today and 2050. In addition, the costs for plant construction and operation were estimated. The results show that synthetic energy carriers generally have a significantly lower global warming potential than today's fossil reference products due to the use of renewable energies. However, the production of electricity generation plants and associated economic processes - such as steel and cement production - can still make a relevant contribution to the global warming potential if they are not also greenhouse neutral. At the same time, it is this production of the necessary plants that leads to (sometimes significantly) increased burdens compared with the fossil reference in almost all other impact categories, most notably in terms of water and land use. This study therefore also provides indications of which environmental impacts must be further reduced in the future. Quelle: Froschungsbericht

Advancing multilateral cooperation on climate action

Multilaterale Kooperationsinitiativen (oder "Klimaclubs") können einen Beitrag zu den zusätzlichen Klimaschutzmaßnahmen leisten, die notwendig sind, um die im Pariser Abkommen vereinbarten Ziele zu erreichen. Eine Analyse der aktuellen Zusammenarbeit in den vier Politikbereichen Energiewende, synthetische Kraftstoffe, Ernährungssysteme und Waldschutz ergab mehrere mögliche zusätzliche Themen und Formate für zusätzliche Kooperation. Einige von ihnen haben sich als besonders vielversprechend herausgestellt, nachdem sie im Kontext der Klimarahmenkonvention, der G7 und der G20 sowie der klimafreundlichen Agenda der Biden-Regierung in den USA analysiert wurden. Eine Expert*innenbefragung ergab zudem als zentrales Thema die Notwendigkeit, den nachhaltigen Zugang zu Finanzmitteln zu verbessern und wies zudem darauf hin, dass unter strategischen Gesichtspunkten eine sequenzielle Nutzung politischer Foren zur Förderung neuer Initiativen dienlich sein kann. Derzeit unterscheidet sich die internationale Zusammenarbeit in den vier analysierten Politikbereichen in mehrfacher Hinsicht: Das Ausmaß, in dem die Länder bereits zusammenarbeiten, der Umfang der multilateralen Initiativen und die ihnen zur Verfügung stehenden Instrumente variieren stark. Diese Faktoren hängen von der Entwicklung des jeweiligen Politikbereichs selbst, aber auch von der (wahrgenommenen und tatsächlichen) politischen Unterstützung ab, die Klimaschutz in diesem Bereich erfährt. Um die multilaterale Zusammenarbeit zum Klimawandel in bestimmten Politikbereichen voranzutreiben, müssen daher mehrere Kanäle und Prozesse intelligent genutzt werden. Hierfür werden in diesem Bericht potenzielle Ansatzpunkte aufzeigt. Quelle: Forschungsbericht

T!Raum - Inno!Nord - CO2-Gewinnung aus Abgasen mit gleichzeitiger H2-Produktion (Inno!Nord-KOWA)

Das Projekt "T!Raum - Inno!Nord - CO2-Gewinnung aus Abgasen mit gleichzeitiger H2-Produktion (Inno!Nord-KOWA)" wird vom Umweltbundesamt gefördert und von Hochschule Flensburg, Institut für Nautik und maritime Technologie, Maritimes Zentrum durchgeführt. Das InnoNord WP2 befasst sich mit der Erprobung und Skalierung einer Technologie zur CO2-Abscheidung aus Verbrennungsabgasen und dessen Speicherung in einem chemischen Speicher, mit perspektivischem Ziel der weiteren stofflichen Nutzung bei gleichzeitiger Produktion von Wasserstoff. Hierbei werden die beim Betrieb eines Gasmotors entstehenden Rauchgase einem Abgasscrubber zugeführt und das in den Abgasen befindliche CO2 in einer Kaliumhydroxid-Lösung gebunden. Die entstehende Waschflüssigkeit wird daraufhin mit Hilfe einer Membrananlage von mitgeschleppten Feststoffen gereinigt und für die Abtrennung mittels Elektrolyse vorbereitet. Durch den Elektrolyseprozess wird der chemische Speicher regeneriert und dabei ein Gemisch aus CO2 und O2 gewonnen, welches in nachfolgenden Prozessschritten getrennt werden kann, um CO2 gezielt nutzbar zu machen. Die elektrolytische Regeneration des chemischen Speichers findet dabei unter Einsatz von erneuerbaren Energien statt. Zusätzlich entsteht Wasserstoff, welcher als Grundstoff für die Herstellung synthetischer Kraftstoffe genutzt werden kann. Das Gesamtziel des Vorhabens besteht darin, die Technologie der CO2-Gewinnung aus Abgasen mit gleichzeitiger H2-Produktion auf einen höheren Technologiereifegrad zu heben. Dieses Ziel soll gemeinsam mit Partnern aus der Region und darüber hinaus erreicht werden. Der Technologietransfer steht dabei im Fokus, so dass als Ziel ebenfalls die Bekanntmachung und etwaige Etablierung der Technologie als Alternative zur Reduktion der Treibhausgasemissionen angestrebt wird.

1 2 3 4 513 14 15