As part of the hydro-meteorological measurement campaign SwabianMOSES 2021 time-domain transmission soil moisture sensors and temperature sensors with custom-made logger systems were used to measure time series of these soil state variables. The aim of these investigations was to provide data on physical soil properties used in a cross-disciplinary approach for a better understanding of hydro-meteorological extremes (such as high precipitation events and droughts). Each measurement site consisted of sensors at three depths with two sensors each. Logger systems were installed at six different observation sites which were distributed across the whole campaign target area in the vicinity of the Swabian Jura in Germany. Decisions on the specific installation depths were made during the installation at the respective sites based on the constitution of the local soil profiles. Installation protocols with a brief soil profile description and photos are part of this dataset. The dataset contains the values of location and time (UTC), soil temperature (in °C), relative permittivity and soil moisture (in % vol) derived from permittivity. Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensor with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the comments.
Cruise AL567 (R/V Alkor) sampled the water column in German territorial waters of the southwest Baltic Sea during 18-30 October 2021. This dataset contains concentrations of dissolved munition compounds from 88 Niskin bottle rosette casts between sea surface and seafloor. Samples were collected at the sea surface (1-2 m depth), approximately 2 m above the seafloor, and immediately below the pycnocline. Dissolved explosives in the samples were measured following Gledhill et al. (2019). Briefly, discrete samples (1 L) were preconcentrated onboard using solid-phase extraction. Target compounds were eluted with acetonitrile, further concentrated by evaporation, and measured by ultra-high performance liquid chromatography and high resolution heated electrospray ionization mass spectrometry.
Tarazona, Jose V.; Gonzalez-Caballero, Maria D. C.; Alba-Gonzalez, Mercedes; Pedraza-Diaz, Susana; Canas, Ana; Dominguez-Morueco, Noelia; Esteban-Lopez, Marta; Cattaneo, Irene; Katsonouri, Andromachi; Makris, Konstantinos C.; Halldorsson, Thorhallur I.; Olafsdottir, Kristin; Zock, Jan-Paul; Dias, Jonatan; Decker, Annelies; Morrens, Bert; Berman, Tamar; Barnett-Itzhaki, Zohar; Lindh, Christian; Gilles, Liese; Govarts, Eva; Schoeters, Greet; Weber, Till; Kolossa-Gehring, Marike; Santonen, Tiina; Castano, Argelia Toxics 10 (2022); online: 9 Juni 2022 The risk assessment of pesticide residues in food is a key priority in the area of food safety. Most jurisdictions have implemented pre-marketing authorization processes, which are supported by prospective risk assessments. These prospective assessments estimate the expected residue levels in food combining results from residue trials, resembling the pesticide use patterns, with food consumption patterns, according to internationally agreed procedures. In addition, jurisdictions such as the European Union (EU) have implemented large monitoring programs, measuring actual pesticide residue levels in food, and are supporting large-scale human biomonitoring programs for confirming the actual exposure levels and potential risk for consumers. The organophosphate insecticide chlorpyrifos offers an interesting case study, as in the last decade, its acceptable daily intake (ADI) has been reduced several times following risk assessments by the European Food Safety Authority (EFSA). This process has been linked to significant reductions in the use authorized in the EU, reducing consumers' exposure progressively, until the final ban in 2020, accompanied by setting all EU maximum residue levels (MRL) in food at the default value of 0.01 mg/kg. We present a comparison of estimates of the consumer's internal exposure to chlorpyrifos based on the urinary marker 3,5,6-trichloro-2-pyridinol (TCPy), using two sources of monitoring data: monitoring of the food chain from the EU program and biomonitoring of European citizens from the HB4EU project, supported by a literature search. Both methods confirmed a drastic reduction in exposure levels from 2016 onwards. The margin of exposure approach is then used for conducting retrospective risk assessments at different time points, considering the evolution of our understanding of chlorpyrifos toxicity, as well as of exposure levels in EU consumers following the regulatory decisions. Concerns are presented using a color code, and have been identified for almost all studies, particularly for the highest exposed group, but at different levels, reaching the maximum level, red code, for children in Cyprus and Israel. The assessment uncertainties are highlighted and integrated in the identification of levels of concern. doi: 10.3390/toxics10060313