Herstellung von Monomerem Vinylchlorid (VCM) - entweder durch das thermische Cracken von Dichlorethan (EDC) oder durch die Anlagerung von HCl an Acetylen. Dichlorethan wiederum wird durch direkte Chlorierung oder Oxychlorierung von Ethylen produziert. Da die Herstellung von VCM über die Acetylenroute heute nur noch von untergeordneter Bedeutung ist (siehe unten), wird in dieser Prozeßeinheit lediglich die Verfahrenslinie über die Ethylenroute (Ethylen stellt den Ausgangsstoff des Prozesses dar) betrachtet. Der größte Teil des VCM wird heute in bilanztechnisch geschlossenen Anlagen produziert, die auf folgenden drei Verfahrensstufen beruht: 1. Chlorierung von Ethylen mit Chlor in flüssiger Phase bei niedriger Temperatur zu 1,2-Dichlorethan (EDC), als Katalysator dient FeCl3 2. Oxychlorierung von Ethylen mit HCl und Sauerstoff (oder Luft) zu EDC bei Temperaturen von 230-315 §C und Drücken von 3-13 bar, als Katalysatoren dienen Metallchloride 3. Pyrolyse von EDC zu VCM unter Abspaltung von HCl bei Temperaturen von 500-600 §C und Drücken von 10-35 bar. Die Kombination der Verfahrensstufen 1 und 2 erlaubt es, die bei der Pyrolyse entstehende HCl vollständig als Rohstoff für die EDC-Herstellung in Stufe 2 zu verwenden. Die Oxychlorierung kann mit Luft oder mit Sauerstoff durchgeführt werden, wobei heute etwas mehr als ein Drittel der Produktion unter Verwendung von Sauerstoff stattfindet. Das EDC, das in der Chlorierung und Oxychlorierung entsteht, muß vor dem Einsatz in der Pyrolyse durch Destillation gereinigt werden. Als Nebenprodukte der Synthese treten Acetylen, Benzol, verschiedene Chlorkohlenwasserstoffe und Teere auf. Das gebildete VCM wird einer destillativen Reinigung unterworfen. Die Weltproduktionsmenge an VCM betrug 1985 ca. 13,6 Mio. t (davon Nordamerika ca. 4 Mio. t, Westeuropa ca. 5 Mio. t). Ungefähr 95 % der Weltproduktion wurden zur Herstellung von PVC verwendet. Die jährliche Zuwachsrate der VCM-Produktion wird auf 1 bis 5 % geschätzt. Neue Anlagen sind in Osteuropa, Entwicklungs- und Erdölproduzierenden Ländern geplant oder im Bau (Ullmann 1986). Weltweit wird mehr als 90 % des VCM über die Dichlorethanroute hergestellt (Ethylen ist deutlich preisgünstiger). In der Bundesrepublik arbeitet aber noch eine Anlage mit rund 25 % der Gesamtkapazität (Gesamtproduktion 1987 ca. 1,43 Mio. t VCM), in der die Chlorierung von Ethylen mit dem Acetylenverfahren kombiniert wird (#1). Weitere 25 % der VCM-Produktion werden über Ethylen/Oxychlorierung mit reinem Sauerstoff und die restlichen 50 % über Ethylen/Oxychlorierung mit Luft hergestellt. Bei GEMIS wird nur die VCM-Herstellung über die Ethylenroute mit Sauerstoff bilanziert. Für die Genese der Kennziffern wurden bei GEMIS Daten aus #1 bzw. #2 verwendet. Die dort enthaltenen Werten geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. bei Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t VCM werden 470 kg Ethylen, 580 kg Chlor und 128 kg Sauerstoff eingesetzt. Bei der chemischen Reaktion werden 144 kg Wasser gebildet. Es fallen 34 kg an Nebenprodukten bzw. Reststoffen (Leichtsieder: Chloroform, EDC etc.; Schwersieder: Trichlorethan, Tetrachlorethan, etc.; teerige Rückstände) an. Die destillierbaren Nebenprodukte werden chlorolysiert (ca. 19 kg), der Rest (ca. 15 kg, diese werden bei GEMIS als Produktionsabfälle eingestuft) wird verbrannt (#1). Energiebedarf: Der Energiebedarf zur Herstellung einer Tonne VCM beträgt nach #1 4,98 GJ ( 0,78 GJ elektrische Energie und 4,20 GJ Energieträger). Emissionen: Die Oxychlorierung ist bezüglich der PCDD/PCDF-Emissionen (Abgasverbrennung und Reststoffe) die relevanteste Prozeßstufe. Die PCDD/PCDF werden im wesentlichen am Katalysator adsorbiert und entweder über Stäube in die Luft, nach nasser Abscheidung über Katalysatorschlamm als Abfall oder über das Wasser ausgetragen. Zu erwarten sind PCDD/PCDF auch in der Leicht- und Schwersiederfraktion der Nebenprodukte der integrierten Oxychlorierung. In #2 werden Dioxinemissionen der Vinylchloridproduktion nach einer Studie von Norsk Hydro aufgeführt. Die Dioxinemissionen in die Luft (vermutlich aus der Abgasverbrennung und Nebenproduktverbrennung) werden mit 0,7 TE (ng/kg VCM), Emissionen ins Wasser mit 0,09 TE (ng/kg VCM) und die Emissionen mit dem Produkt mit 0,07 TE (ng/kg VCM) angegeben. Die in der Literatur diskutierten Daten zu PCDD/PCDF-Emissionen aus der PVC- bzw. VCM-Produktion schwanken um mehrere Größenordnungen (Spannbreite für Gesamtemissionen ca. 0,2 - 100 ng/kg PVC bzw. VCM). Die oben aufgeführten Daten liegen im unteren Bereich der diskutierten Spannbreite. An prozessspezifischen Luftemissionen bei der VCM-Herstellung sind Vinylchlorid und 1,2-Dichlorethan relevant. In #1 werden diese Emissionen berechnet. Es werden für beide Chemikalien Werte von jeweils 2 g/t VCM angegeben. Dabei wurden alle Emissionen aus diffusen Quellen nicht berücksichtigt. Die Emissionen aus diffusen Quellen dürften bei VCM bedeutender sein. Sie werden nach #1 von Herstellern auf 20 bis 30 t/Jahr geschätzt. Auf der Grundlage des Mittelwertes von 25 t/Jahr und einer Jahresproduktion von 1,43 Mio. t VCM errechnet sich ein Wert von ca. 17 g/t VCM für die diffusen Emissionen. Als Kennziffer für die VCM-Emissionen wurden die Summe aus der diffusen Emission (17 g) und der in #1 berechneten Emission (Vinylchlorid 2 g und 1,2-Dichlorethan 2 g) verwendet. Vinylchlorid und 1,2-Dichlorethan werden bei GEMIS unter NMVOC zusammengefaßt (21 g/t VCM). Wasser: Für die Herstellung von VCM werden nach #1 insgesamt 293,54 t Wasser/t VCM benötigt. 290 t werden davon als Kühlwasser, 1,0 t als Kesselspeisewasser, 1,64 t als Hochdruckdampf und 0,90 t als Niederdruckdampf verwendet. Bei der Oxychlorierung entsteht Abwasser als Reaktionswasser, als EDC Waschwasser, aus dem mit der Verbrennungsluft eingebrachten Wasser und als Strippdampfkondensat. Die spezifische Abwassermenge wird mit 0,4 m3/t VCM angegeben (#1). In #2 werden aus einer Studie von Norsk Hydro eine Vielzahl an Luft-, Wasseremissionen und Abfällen aufgeführt. Beispielhaft werden hier die folgenden Abwasserwerte wiedergegeben: CSB5 0,59 kg/t VCM, 0,4 g EDC/t VCM und 0,14 g Cu/t VCM. Es fallen weiterhin ca. 1 kg chemische und biologische Schlämme an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 172% Produkt: Grundstoffe-Chemie
Herstellung von Monomerem Vinylchlorid (VCM) - entweder durch das thermische Cracken von Dichlorethan (EDC) oder durch die Anlagerung von HCl an Acetylen. Dichlorethan wiederum wird durch direkte Chlorierung oder Oxychlorierung von Ethylen produziert. Da die Herstellung von VCM über die Acetylenroute heute nur noch von untergeordneter Bedeutung ist (siehe unten), wird in dieser Prozeßeinheit lediglich die Verfahrenslinie über die Ethylenroute (Ethylen stellt den Ausgangsstoff des Prozesses dar) betrachtet. Der größte Teil des VCM wird heute in bilanztechnisch geschlossenen Anlagen produziert, die auf folgenden drei Verfahrensstufen beruht: 1. Chlorierung von Ethylen mit Chlor in flüssiger Phase bei niedriger Temperatur zu 1,2-Dichlorethan (EDC), als Katalysator dient FeCl3 2. Oxychlorierung von Ethylen mit HCl und Sauerstoff (oder Luft) zu EDC bei Temperaturen von 230-315 §C und Drücken von 3-13 bar, als Katalysatoren dienen Metallchloride 3. Pyrolyse von EDC zu VCM unter Abspaltung von HCl bei Temperaturen von 500-600 §C und Drücken von 10-35 bar. Die Kombination der Verfahrensstufen 1 und 2 erlaubt es, die bei der Pyrolyse entstehende HCl vollständig als Rohstoff für die EDC-Herstellung in Stufe 2 zu verwenden. Die Oxychlorierung kann mit Luft oder mit Sauerstoff durchgeführt werden, wobei heute etwas mehr als ein Drittel der Produktion unter Verwendung von Sauerstoff stattfindet. Das EDC, das in der Chlorierung und Oxychlorierung entsteht, muß vor dem Einsatz in der Pyrolyse durch Destillation gereinigt werden. Als Nebenprodukte der Synthese treten Acetylen, Benzol, verschiedene Chlorkohlenwasserstoffe und Teere auf. Das gebildete VCM wird einer destillativen Reinigung unterworfen. Die Weltproduktionsmenge an VCM betrug 1985 ca. 13,6 Mio. t (davon Nordamerika ca. 4 Mio. t, Westeuropa ca. 5 Mio. t). Ungefähr 95 % der Weltproduktion wurden zur Herstellung von PVC verwendet. Die jährliche Zuwachsrate der VCM-Produktion wird auf 1 bis 5 % geschätzt. Neue Anlagen sind in Osteuropa, Entwicklungs- und Erdölproduzierenden Ländern geplant oder im Bau (Ullmann 1986). Weltweit wird mehr als 90 % des VCM über die Dichlorethanroute hergestellt (Ethylen ist deutlich preisgünstiger). In der Bundesrepublik arbeitet aber noch eine Anlage mit rund 25 % der Gesamtkapazität (Gesamtproduktion 1987 ca. 1,43 Mio. t VCM), in der die Chlorierung von Ethylen mit dem Acetylenverfahren kombiniert wird (#1). Weitere 25 % der VCM-Produktion werden über Ethylen/Oxychlorierung mit reinem Sauerstoff und die restlichen 50 % über Ethylen/Oxychlorierung mit Luft hergestellt. Bei GEMIS wird nur die VCM-Herstellung über die Ethylenroute mit Sauerstoff bilanziert. Für die Genese der Kennziffern wurden bei GEMIS Daten aus #1 bzw. #2 verwendet. Die dort enthaltenen Werten geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. bei Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t VCM werden 470 kg Ethylen, 580 kg Chlor und 128 kg Sauerstoff eingesetzt. Bei der chemischen Reaktion werden 144 kg Wasser gebildet. Es fallen 34 kg an Nebenprodukten bzw. Reststoffen (Leichtsieder: Chloroform, EDC etc.; Schwersieder: Trichlorethan, Tetrachlorethan, etc.; teerige Rückstände) an. Die destillierbaren Nebenprodukte werden chlorolysiert (ca. 19 kg), der Rest (ca. 15 kg, diese werden bei GEMIS als Produktionsabfälle eingestuft) wird verbrannt (#1). Energiebedarf: Der Energiebedarf zur Herstellung einer Tonne VCM beträgt nach #1 4,98 GJ ( 0,78 GJ elektrische Energie und 4,20 GJ Energieträger). Emissionen: Die Oxychlorierung ist bezüglich der PCDD/PCDF-Emissionen (Abgasverbrennung und Reststoffe) die relevanteste Prozeßstufe. Die PCDD/PCDF werden im wesentlichen am Katalysator adsorbiert und entweder über Stäube in die Luft, nach nasser Abscheidung über Katalysatorschlamm als Abfall oder über das Wasser ausgetragen. Zu erwarten sind PCDD/PCDF auch in der Leicht- und Schwersiederfraktion der Nebenprodukte der integrierten Oxychlorierung. In #2 werden Dioxinemissionen der Vinylchloridproduktion nach einer Studie von Norsk Hydro aufgeführt. Die Dioxinemissionen in die Luft (vermutlich aus der Abgasverbrennung und Nebenproduktverbrennung) werden mit 0,7 TE (ng/kg VCM), Emissionen ins Wasser mit 0,09 TE (ng/kg VCM) und die Emissionen mit dem Produkt mit 0,07 TE (ng/kg VCM) angegeben. Die in der Literatur diskutierten Daten zu PCDD/PCDF-Emissionen aus der PVC- bzw. VCM-Produktion schwanken um mehrere Größenordnungen (Spannbreite für Gesamtemissionen ca. 0,2 - 100 ng/kg PVC bzw. VCM). Die oben aufgeführten Daten liegen im unteren Bereich der diskutierten Spannbreite. An prozessspezifischen Luftemissionen bei der VCM-Herstellung sind Vinylchlorid und 1,2-Dichlorethan relevant. In #1 werden diese Emissionen berechnet. Es werden für beide Chemikalien Werte von jeweils 2 g/t VCM angegeben. Dabei wurden alle Emissionen aus diffusen Quellen nicht berücksichtigt. Die Emissionen aus diffusen Quellen dürften bei VCM bedeutender sein. Sie werden nach #1 von Herstellern auf 20 bis 30 t/Jahr geschätzt. Auf der Grundlage des Mittelwertes von 25 t/Jahr und einer Jahresproduktion von 1,43 Mio. t VCM errechnet sich ein Wert von ca. 17 g/t VCM für die diffusen Emissionen. Als Kennziffer für die VCM-Emissionen wurden die Summe aus der diffusen Emission (17 g) und der in #1 berechneten Emission (Vinylchlorid 2 g und 1,2-Dichlorethan 2 g) verwendet. Vinylchlorid und 1,2-Dichlorethan werden bei GEMIS unter NMVOC zusammengefaßt (21 g/t VCM). Wasser: Für die Herstellung von VCM werden nach #1 insgesamt 293,54 t Wasser/t VCM benötigt. 290 t werden davon als Kühlwasser, 1,0 t als Kesselspeisewasser, 1,64 t als Hochdruckdampf und 0,90 t als Niederdruckdampf verwendet. Bei der Oxychlorierung entsteht Abwasser als Reaktionswasser, als EDC Waschwasser, aus dem mit der Verbrennungsluft eingebrachten Wasser und als Strippdampfkondensat. Die spezifische Abwassermenge wird mit 0,4 m3/t VCM angegeben (#1). In #2 werden aus einer Studie von Norsk Hydro eine Vielzahl an Luft-, Wasseremissionen und Abfällen aufgeführt. Beispielhaft werden hier die folgenden Abwasserwerte wiedergegeben: CSB5 0,59 kg/t VCM, 0,4 g EDC/t VCM und 0,14 g Cu/t VCM. Es fallen weiterhin ca. 1 kg chemische und biologische Schlämme an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 172% Produkt: Grundstoffe-Chemie
Herstellung von Monomerem Vinylchlorid (VCM) - entweder durch das thermische Cracken von Dichlorethan (EDC) oder durch die Anlagerung von HCl an Acetylen. Dichlorethan wiederum wird durch direkte Chlorierung oder Oxychlorierung von Ethylen produziert. Da die Herstellung von VCM über die Acetylenroute heute nur noch von untergeordneter Bedeutung ist (siehe unten), wird in dieser Prozeßeinheit lediglich die Verfahrenslinie über die Ethylenroute (Ethylen stellt den Ausgangsstoff des Prozesses dar) betrachtet. Der größte Teil des VCM wird heute in bilanztechnisch geschlossenen Anlagen produziert, die auf folgenden drei Verfahrensstufen beruht: 1. Chlorierung von Ethylen mit Chlor in flüssiger Phase bei niedriger Temperatur zu 1,2-Dichlorethan (EDC), als Katalysator dient FeCl3 2. Oxychlorierung von Ethylen mit HCl und Sauerstoff (oder Luft) zu EDC bei Temperaturen von 230-315 §C und Drücken von 3-13 bar, als Katalysatoren dienen Metallchloride 3. Pyrolyse von EDC zu VCM unter Abspaltung von HCl bei Temperaturen von 500-600 §C und Drücken von 10-35 bar. Die Kombination der Verfahrensstufen 1 und 2 erlaubt es, die bei der Pyrolyse entstehende HCl vollständig als Rohstoff für die EDC-Herstellung in Stufe 2 zu verwenden. Die Oxychlorierung kann mit Luft oder mit Sauerstoff durchgeführt werden, wobei heute etwas mehr als ein Drittel der Produktion unter Verwendung von Sauerstoff stattfindet. Das EDC, das in der Chlorierung und Oxychlorierung entsteht, muß vor dem Einsatz in der Pyrolyse durch Destillation gereinigt werden. Als Nebenprodukte der Synthese treten Acetylen, Benzol, verschiedene Chlorkohlenwasserstoffe und Teere auf. Das gebildete VCM wird einer destillativen Reinigung unterworfen. Die Weltproduktionsmenge an VCM betrug 1985 ca. 13,6 Mio. t (davon Nordamerika ca. 4 Mio. t, Westeuropa ca. 5 Mio. t). Ungefähr 95 % der Weltproduktion wurden zur Herstellung von PVC verwendet. Die jährliche Zuwachsrate der VCM-Produktion wird auf 1 bis 5 % geschätzt. Neue Anlagen sind in Osteuropa, Entwicklungs- und Erdölproduzierenden Ländern geplant oder im Bau (Ullmann 1986). Weltweit wird mehr als 90 % des VCM über die Dichlorethanroute hergestellt (Ethylen ist deutlich preisgünstiger). In der Bundesrepublik arbeitet aber noch eine Anlage mit rund 25 % der Gesamtkapazität (Gesamtproduktion 1987 ca. 1,43 Mio. t VCM), in der die Chlorierung von Ethylen mit dem Acetylenverfahren kombiniert wird (#1). Weitere 25 % der VCM-Produktion werden über Ethylen/Oxychlorierung mit reinem Sauerstoff und die restlichen 50 % über Ethylen/Oxychlorierung mit Luft hergestellt. Bei GEMIS wird nur die VCM-Herstellung über die Ethylenroute mit Sauerstoff bilanziert. Für die Genese der Kennziffern wurden bei GEMIS Daten aus #1 bzw. #2 verwendet. Die dort enthaltenen Werten geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. bei Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t VCM werden 470 kg Ethylen, 580 kg Chlor und 128 kg Sauerstoff eingesetzt. Bei der chemischen Reaktion werden 144 kg Wasser gebildet. Es fallen 34 kg an Nebenprodukten bzw. Reststoffen (Leichtsieder: Chloroform, EDC etc.; Schwersieder: Trichlorethan, Tetrachlorethan, etc.; teerige Rückstände) an. Die destillierbaren Nebenprodukte werden chlorolysiert (ca. 19 kg), der Rest (ca. 15 kg, diese werden bei GEMIS als Produktionsabfälle eingestuft) wird verbrannt (#1). Energiebedarf: Der Energiebedarf zur Herstellung einer Tonne VCM beträgt nach #1 4,98 GJ ( 0,78 GJ elektrische Energie und 4,20 GJ Energieträger). Emissionen: Die Oxychlorierung ist bezüglich der PCDD/PCDF-Emissionen (Abgasverbrennung und Reststoffe) die relevanteste Prozeßstufe. Die PCDD/PCDF werden im wesentlichen am Katalysator adsorbiert und entweder über Stäube in die Luft, nach nasser Abscheidung über Katalysatorschlamm als Abfall oder über das Wasser ausgetragen. Zu erwarten sind PCDD/PCDF auch in der Leicht- und Schwersiederfraktion der Nebenprodukte der integrierten Oxychlorierung. In #2 werden Dioxinemissionen der Vinylchloridproduktion nach einer Studie von Norsk Hydro aufgeführt. Die Dioxinemissionen in die Luft (vermutlich aus der Abgasverbrennung und Nebenproduktverbrennung) werden mit 0,7 TE (ng/kg VCM), Emissionen ins Wasser mit 0,09 TE (ng/kg VCM) und die Emissionen mit dem Produkt mit 0,07 TE (ng/kg VCM) angegeben. Die in der Literatur diskutierten Daten zu PCDD/PCDF-Emissionen aus der PVC- bzw. VCM-Produktion schwanken um mehrere Größenordnungen (Spannbreite für Gesamtemissionen ca. 0,2 - 100 ng/kg PVC bzw. VCM). Die oben aufgeführten Daten liegen im unteren Bereich der diskutierten Spannbreite. An prozessspezifischen Luftemissionen bei der VCM-Herstellung sind Vinylchlorid und 1,2-Dichlorethan relevant. In #1 werden diese Emissionen berechnet. Es werden für beide Chemikalien Werte von jeweils 2 g/t VCM angegeben. Dabei wurden alle Emissionen aus diffusen Quellen nicht berücksichtigt. Die Emissionen aus diffusen Quellen dürften bei VCM bedeutender sein. Sie werden nach #1 von Herstellern auf 20 bis 30 t/Jahr geschätzt. Auf der Grundlage des Mittelwertes von 25 t/Jahr und einer Jahresproduktion von 1,43 Mio. t VCM errechnet sich ein Wert von ca. 17 g/t VCM für die diffusen Emissionen. Als Kennziffer für die VCM-Emissionen wurden die Summe aus der diffusen Emission (17 g) und der in #1 berechneten Emission (Vinylchlorid 2 g und 1,2-Dichlorethan 2 g) verwendet. Vinylchlorid und 1,2-Dichlorethan werden bei GEMIS unter NMVOC zusammengefaßt (21 g/t VCM). Wasser: Für die Herstellung von VCM werden nach #1 insgesamt 293,54 t Wasser/t VCM benötigt. 290 t werden davon als Kühlwasser, 1,0 t als Kesselspeisewasser, 1,64 t als Hochdruckdampf und 0,90 t als Niederdruckdampf verwendet. Bei der Oxychlorierung entsteht Abwasser als Reaktionswasser, als EDC Waschwasser, aus dem mit der Verbrennungsluft eingebrachten Wasser und als Strippdampfkondensat. Die spezifische Abwassermenge wird mit 0,4 m3/t VCM angegeben (#1). In #2 werden aus einer Studie von Norsk Hydro eine Vielzahl an Luft-, Wasseremissionen und Abfällen aufgeführt. Beispielhaft werden hier die folgenden Abwasserwerte wiedergegeben: CSB5 0,59 kg/t VCM, 0,4 g EDC/t VCM und 0,14 g Cu/t VCM. Es fallen weiterhin ca. 1 kg chemische und biologische Schlämme an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 172% Produkt: Grundstoffe-Chemie
Herstellung von Monomerem Vinylchlorid (VCM) - entweder durch das thermische Cracken von Dichlorethan (EDC) oder durch die Anlagerung von HCl an Acetylen. Dichlorethan wiederum wird durch direkte Chlorierung oder Oxychlorierung von Ethylen produziert. Da die Herstellung von VCM über die Acetylenroute heute nur noch von untergeordneter Bedeutung ist (siehe unten), wird in dieser Prozeßeinheit lediglich die Verfahrenslinie über die Ethylenroute (Ethylen stellt den Ausgangsstoff des Prozesses dar) betrachtet. Der größte Teil des VCM wird heute in bilanztechnisch geschlossenen Anlagen produziert, die auf folgenden drei Verfahrensstufen beruht: 1. Chlorierung von Ethylen mit Chlor in flüssiger Phase bei niedriger Temperatur zu 1,2-Dichlorethan (EDC), als Katalysator dient FeCl3 2. Oxychlorierung von Ethylen mit HCl und Sauerstoff (oder Luft) zu EDC bei Temperaturen von 230-315 §C und Drücken von 3-13 bar, als Katalysatoren dienen Metallchloride 3. Pyrolyse von EDC zu VCM unter Abspaltung von HCl bei Temperaturen von 500-600 §C und Drücken von 10-35 bar. Die Kombination der Verfahrensstufen 1 und 2 erlaubt es, die bei der Pyrolyse entstehende HCl vollständig als Rohstoff für die EDC-Herstellung in Stufe 2 zu verwenden. Die Oxychlorierung kann mit Luft oder mit Sauerstoff durchgeführt werden, wobei heute etwas mehr als ein Drittel der Produktion unter Verwendung von Sauerstoff stattfindet. Das EDC, das in der Chlorierung und Oxychlorierung entsteht, muß vor dem Einsatz in der Pyrolyse durch Destillation gereinigt werden. Als Nebenprodukte der Synthese treten Acetylen, Benzol, verschiedene Chlorkohlenwasserstoffe und Teere auf. Das gebildete VCM wird einer destillativen Reinigung unterworfen. Die Weltproduktionsmenge an VCM betrug 1985 ca. 13,6 Mio. t (davon Nordamerika ca. 4 Mio. t, Westeuropa ca. 5 Mio. t). Ungefähr 95 % der Weltproduktion wurden zur Herstellung von PVC verwendet. Die jährliche Zuwachsrate der VCM-Produktion wird auf 1 bis 5 % geschätzt. Neue Anlagen sind in Osteuropa, Entwicklungs- und Erdölproduzierenden Ländern geplant oder im Bau (Ullmann 1986). Weltweit wird mehr als 90 % des VCM über die Dichlorethanroute hergestellt (Ethylen ist deutlich preisgünstiger). In der Bundesrepublik arbeitet aber noch eine Anlage mit rund 25 % der Gesamtkapazität (Gesamtproduktion 1987 ca. 1,43 Mio. t VCM), in der die Chlorierung von Ethylen mit dem Acetylenverfahren kombiniert wird (#1). Weitere 25 % der VCM-Produktion werden über Ethylen/Oxychlorierung mit reinem Sauerstoff und die restlichen 50 % über Ethylen/Oxychlorierung mit Luft hergestellt. Bei GEMIS wird nur die VCM-Herstellung über die Ethylenroute mit Sauerstoff bilanziert. Für die Genese der Kennziffern wurden bei GEMIS Daten aus #1 bzw. #2 verwendet. Die dort enthaltenen Werten geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. bei Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t VCM werden 470 kg Ethylen, 580 kg Chlor und 128 kg Sauerstoff eingesetzt. Bei der chemischen Reaktion werden 144 kg Wasser gebildet. Es fallen 34 kg an Nebenprodukten bzw. Reststoffen (Leichtsieder: Chloroform, EDC etc.; Schwersieder: Trichlorethan, Tetrachlorethan, etc.; teerige Rückstände) an. Die destillierbaren Nebenprodukte werden chlorolysiert (ca. 19 kg), der Rest (ca. 15 kg, diese werden bei GEMIS als Produktionsabfälle eingestuft) wird verbrannt (#1). Energiebedarf: Der Energiebedarf zur Herstellung einer Tonne VCM beträgt nach #1 4,98 GJ ( 0,78 GJ elektrische Energie und 4,20 GJ Energieträger). Emissionen: Die Oxychlorierung ist bezüglich der PCDD/PCDF-Emissionen (Abgasverbrennung und Reststoffe) die relevanteste Prozeßstufe. Die PCDD/PCDF werden im wesentlichen am Katalysator adsorbiert und entweder über Stäube in die Luft, nach nasser Abscheidung über Katalysatorschlamm als Abfall oder über das Wasser ausgetragen. Zu erwarten sind PCDD/PCDF auch in der Leicht- und Schwersiederfraktion der Nebenprodukte der integrierten Oxychlorierung. In #2 werden Dioxinemissionen der Vinylchloridproduktion nach einer Studie von Norsk Hydro aufgeführt. Die Dioxinemissionen in die Luft (vermutlich aus der Abgasverbrennung und Nebenproduktverbrennung) werden mit 0,7 TE (ng/kg VCM), Emissionen ins Wasser mit 0,09 TE (ng/kg VCM) und die Emissionen mit dem Produkt mit 0,07 TE (ng/kg VCM) angegeben. Die in der Literatur diskutierten Daten zu PCDD/PCDF-Emissionen aus der PVC- bzw. VCM-Produktion schwanken um mehrere Größenordnungen (Spannbreite für Gesamtemissionen ca. 0,2 - 100 ng/kg PVC bzw. VCM). Die oben aufgeführten Daten liegen im unteren Bereich der diskutierten Spannbreite. An prozessspezifischen Luftemissionen bei der VCM-Herstellung sind Vinylchlorid und 1,2-Dichlorethan relevant. In #1 werden diese Emissionen berechnet. Es werden für beide Chemikalien Werte von jeweils 2 g/t VCM angegeben. Dabei wurden alle Emissionen aus diffusen Quellen nicht berücksichtigt. Die Emissionen aus diffusen Quellen dürften bei VCM bedeutender sein. Sie werden nach #1 von Herstellern auf 20 bis 30 t/Jahr geschätzt. Auf der Grundlage des Mittelwertes von 25 t/Jahr und einer Jahresproduktion von 1,43 Mio. t VCM errechnet sich ein Wert von ca. 17 g/t VCM für die diffusen Emissionen. Als Kennziffer für die VCM-Emissionen wurden die Summe aus der diffusen Emission (17 g) und der in #1 berechneten Emission (Vinylchlorid 2 g und 1,2-Dichlorethan 2 g) verwendet. Vinylchlorid und 1,2-Dichlorethan werden bei GEMIS unter NMVOC zusammengefaßt (21 g/t VCM). Wasser: Für die Herstellung von VCM werden nach #1 insgesamt 293,54 t Wasser/t VCM benötigt. 290 t werden davon als Kühlwasser, 1,0 t als Kesselspeisewasser, 1,64 t als Hochdruckdampf und 0,90 t als Niederdruckdampf verwendet. Bei der Oxychlorierung entsteht Abwasser als Reaktionswasser, als EDC Waschwasser, aus dem mit der Verbrennungsluft eingebrachten Wasser und als Strippdampfkondensat. Die spezifische Abwassermenge wird mit 0,4 m3/t VCM angegeben (#1). In #2 werden aus einer Studie von Norsk Hydro eine Vielzahl an Luft-, Wasseremissionen und Abfällen aufgeführt. Beispielhaft werden hier die folgenden Abwasserwerte wiedergegeben: CSB5 0,59 kg/t VCM, 0,4 g EDC/t VCM und 0,14 g Cu/t VCM. Es fallen weiterhin ca. 1 kg chemische und biologische Schlämme an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 172% Produkt: Grundstoffe-Chemie
Herstellung von Monomerem Vinylchlorid (VCM) - entweder durch das thermische Cracken von Dichlorethan (EDC) oder durch die Anlagerung von HCl an Acetylen. Dichlorethan wiederum wird durch direkte Chlorierung oder Oxychlorierung von Ethylen produziert. Da die Herstellung von VCM über die Acetylenroute heute nur noch von untergeordneter Bedeutung ist (siehe unten), wird in dieser Prozeßeinheit lediglich die Verfahrenslinie über die Ethylenroute (Ethylen stellt den Ausgangsstoff des Prozesses dar) betrachtet. Der größte Teil des VCM wird heute in bilanztechnisch geschlossenen Anlagen produziert, die auf folgenden drei Verfahrensstufen beruht: 1. Chlorierung von Ethylen mit Chlor in flüssiger Phase bei niedriger Temperatur zu 1,2-Dichlorethan (EDC), als Katalysator dient FeCl3 2. Oxychlorierung von Ethylen mit HCl und Sauerstoff (oder Luft) zu EDC bei Temperaturen von 230-315 §C und Drücken von 3-13 bar, als Katalysatoren dienen Metallchloride 3. Pyrolyse von EDC zu VCM unter Abspaltung von HCl bei Temperaturen von 500-600 §C und Drücken von 10-35 bar. Die Kombination der Verfahrensstufen 1 und 2 erlaubt es, die bei der Pyrolyse entstehende HCl vollständig als Rohstoff für die EDC-Herstellung in Stufe 2 zu verwenden. Die Oxychlorierung kann mit Luft oder mit Sauerstoff durchgeführt werden, wobei heute etwas mehr als ein Drittel der Produktion unter Verwendung von Sauerstoff stattfindet. Das EDC, das in der Chlorierung und Oxychlorierung entsteht, muß vor dem Einsatz in der Pyrolyse durch Destillation gereinigt werden. Als Nebenprodukte der Synthese treten Acetylen, Benzol, verschiedene Chlorkohlenwasserstoffe und Teere auf. Das gebildete VCM wird einer destillativen Reinigung unterworfen. Die Weltproduktionsmenge an VCM betrug 1985 ca. 13,6 Mio. t (davon Nordamerika ca. 4 Mio. t, Westeuropa ca. 5 Mio. t). Ungefähr 95 % der Weltproduktion wurden zur Herstellung von PVC verwendet. Die jährliche Zuwachsrate der VCM-Produktion wird auf 1 bis 5 % geschätzt. Neue Anlagen sind in Osteuropa, Entwicklungs- und Erdölproduzierenden Ländern geplant oder im Bau (Ullmann 1986). Weltweit wird mehr als 90 % des VCM über die Dichlorethanroute hergestellt (Ethylen ist deutlich preisgünstiger). In der Bundesrepublik arbeitet aber noch eine Anlage mit rund 25 % der Gesamtkapazität (Gesamtproduktion 1987 ca. 1,43 Mio. t VCM), in der die Chlorierung von Ethylen mit dem Acetylenverfahren kombiniert wird (#1). Weitere 25 % der VCM-Produktion werden über Ethylen/Oxychlorierung mit reinem Sauerstoff und die restlichen 50 % über Ethylen/Oxychlorierung mit Luft hergestellt. Bei GEMIS wird nur die VCM-Herstellung über die Ethylenroute mit Sauerstoff bilanziert. Für die Genese der Kennziffern wurden bei GEMIS Daten aus #1 bzw. #2 verwendet. Die dort enthaltenen Werten geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. bei Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t VCM werden 470 kg Ethylen, 580 kg Chlor und 128 kg Sauerstoff eingesetzt. Bei der chemischen Reaktion werden 144 kg Wasser gebildet. Es fallen 34 kg an Nebenprodukten bzw. Reststoffen (Leichtsieder: Chloroform, EDC etc.; Schwersieder: Trichlorethan, Tetrachlorethan, etc.; teerige Rückstände) an. Die destillierbaren Nebenprodukte werden chlorolysiert (ca. 19 kg), der Rest (ca. 15 kg, diese werden bei GEMIS als Produktionsabfälle eingestuft) wird verbrannt (#1). Energiebedarf: Der Energiebedarf zur Herstellung einer Tonne VCM beträgt nach #1 4,98 GJ ( 0,78 GJ elektrische Energie und 4,20 GJ Energieträger). Emissionen: Die Oxychlorierung ist bezüglich der PCDD/PCDF-Emissionen (Abgasverbrennung und Reststoffe) die relevanteste Prozeßstufe. Die PCDD/PCDF werden im wesentlichen am Katalysator adsorbiert und entweder über Stäube in die Luft, nach nasser Abscheidung über Katalysatorschlamm als Abfall oder über das Wasser ausgetragen. Zu erwarten sind PCDD/PCDF auch in der Leicht- und Schwersiederfraktion der Nebenprodukte der integrierten Oxychlorierung. In #2 werden Dioxinemissionen der Vinylchloridproduktion nach einer Studie von Norsk Hydro aufgeführt. Die Dioxinemissionen in die Luft (vermutlich aus der Abgasverbrennung und Nebenproduktverbrennung) werden mit 0,7 TE (ng/kg VCM), Emissionen ins Wasser mit 0,09 TE (ng/kg VCM) und die Emissionen mit dem Produkt mit 0,07 TE (ng/kg VCM) angegeben. Die in der Literatur diskutierten Daten zu PCDD/PCDF-Emissionen aus der PVC- bzw. VCM-Produktion schwanken um mehrere Größenordnungen (Spannbreite für Gesamtemissionen ca. 0,2 - 100 ng/kg PVC bzw. VCM). Die oben aufgeführten Daten liegen im unteren Bereich der diskutierten Spannbreite. An prozessspezifischen Luftemissionen bei der VCM-Herstellung sind Vinylchlorid und 1,2-Dichlorethan relevant. In #1 werden diese Emissionen berechnet. Es werden für beide Chemikalien Werte von jeweils 2 g/t VCM angegeben. Dabei wurden alle Emissionen aus diffusen Quellen nicht berücksichtigt. Die Emissionen aus diffusen Quellen dürften bei VCM bedeutender sein. Sie werden nach #1 von Herstellern auf 20 bis 30 t/Jahr geschätzt. Auf der Grundlage des Mittelwertes von 25 t/Jahr und einer Jahresproduktion von 1,43 Mio. t VCM errechnet sich ein Wert von ca. 17 g/t VCM für die diffusen Emissionen. Als Kennziffer für die VCM-Emissionen wurden die Summe aus der diffusen Emission (17 g) und der in #1 berechneten Emission (Vinylchlorid 2 g und 1,2-Dichlorethan 2 g) verwendet. Vinylchlorid und 1,2-Dichlorethan werden bei GEMIS unter NMVOC zusammengefaßt (21 g/t VCM). Wasser: Für die Herstellung von VCM werden nach #1 insgesamt 293,54 t Wasser/t VCM benötigt. 290 t werden davon als Kühlwasser, 1,0 t als Kesselspeisewasser, 1,64 t als Hochdruckdampf und 0,90 t als Niederdruckdampf verwendet. Bei der Oxychlorierung entsteht Abwasser als Reaktionswasser, als EDC Waschwasser, aus dem mit der Verbrennungsluft eingebrachten Wasser und als Strippdampfkondensat. Die spezifische Abwassermenge wird mit 0,4 m3/t VCM angegeben (#1). In #2 werden aus einer Studie von Norsk Hydro eine Vielzahl an Luft-, Wasseremissionen und Abfällen aufgeführt. Beispielhaft werden hier die folgenden Abwasserwerte wiedergegeben: CSB5 0,59 kg/t VCM, 0,4 g EDC/t VCM und 0,14 g Cu/t VCM. Es fallen weiterhin ca. 1 kg chemische und biologische Schlämme an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 172% Produkt: Grundstoffe-Chemie
Das Projekt "Erzeugung von Energie und Waerme durch Vergasung von Rinde" wird vom Umweltbundesamt gefördert und von Friedrich Wahl GmbH & Co. KG durchgeführt. Objective: Using a double stage gasifier (Michel Kim system) to use locally produced wood waste for gas production. The gas is subsequently used as the source of fuel for 4 Otto gas engines having a total generating capacity of 500 Kw.el. General Information: Gasification of bark is performed in a Michel Kim gasification system of +/- 500 kW el. capacity, working in concurrent flow. The system consist of a two-stage gasifier made by Spama of Berlin. The primary gasification stage partially gasifies pre-dried wood waste to produce an intermediate product (coke) at around 600 degree. C. The air in the gasifier is preheated with waste heat. The secondary stage consists of a coke bed at 950 degree. C. fired by pure air which converts the tars and residual heavy hydrocarbons into combustible gas. The gas then passes through a washer and a cooler. Waste heat from the cooler is used to pre-dry the gasification material. Four Otto gas engines (M.A.N.), each with a capacity of 125 kW el., have been installed. The entire unit is automatic and operates unmanned. Heat produced is used for: - the timber drying halls - the work rooms - the office and accommodations - the storage heaters. Achievements: The Michel Kim gasifier has worked since autumn 1984: many problems have been solved, but the gas production has never been enough for feeding the four gas engines. With a wood waste containing up to 160 per cent moisture, about 580 m3 gas were produced, enough to generate 170 - 250 kWh of electricity. It was impossible to generate any more electricity with the gasifier. It would have taken two gasifiers to attain the 450 kWhe which the sawmill needed. The results obtained clearly show that technical improvements are still necessary in order to run in optimal conditions. Economically the process is not viable with the present energy prices. After more than one year of attempts to improve process efficiency, the project has been stopped.
Das Projekt "Measurements of N-nitroso compounds (N-nitrosamines) in ambient air of workplaces and near coke works and steel shops" wird vom Umweltbundesamt gefördert und von DMT-Gesellschaft für Forschung und Prüfung mbH durchgeführt. Objective: The main objectives of the project are: 1 Determination of the nitrogen compounds which can lead to the formation of N-nitrosamines in coking plants and steelworks. 2 Investigation of artefact formation during sampling. 3 Development of new sampling and analysis techniques and evaluation of whether existing methods of analysis are suitable for N-nitrosamines. 4 Harmonisation (differences, correlations) of the procedures developed by each of the participating institutes and establishing of a standard procedure for use in all countries. 5 First measurements of N-nitrosamines to obtain tenable results which can serve as a basis for EC legislation. The focus will be on measurements at workstations in different types of plant in the coal and steel industries of the participating countries. General Information: Nitrosamines are known carcinogens. They are formed by reaction of preferentially secondary amines with nitro sating agents, both of which may occur at workplaces as undesirable by-products or emissions. Nitrosamines have so far been identified in the ambient air in the metal processing, rubber and leather industries. Bituminous coals used in the coking industry contain 1-2 per cent nitrogen, most of which ends up either in the tar fraction or, following gas scrubbing, as ammonium sulphate. However, coke oven leaks (from charging lids, doors and ascension pipes) may lead to uncontrolled emissions of mainly aromatic amines, which in the presence of nitrous gases (NO and NO2) may be transformed into N-nitrosamines. Formation of N-nitrosamines must also be expected in the steel industry, originating from cooling lubricants containing nitrogen and hardeners used in foundries. A major problem in the measurement of nitrosamines is artefact formation during the sampling process. It has been shown that in this case amines are also retained which react with NOx traces in the ambient air to form N-nitrous amines though only when they reach the substrate. This phenomenon is observed particularly in the presence of aromatic amines, which is specifically the case in coking plants. The pollutant concentrations identified should not be associated with a particular pollution source, as they are caused entirely by artefact formation as a result of subsequent notarisation on the sampling medium. In order to protect workers and the population from the toxicological effects of N-nitrosamines, it is necessary to act upon the conditions favouring the formation of these noxious substances in the environment. To be able to do this it is necessary to have information on concentrations, types of compound and sources of emission of N-nitrosamines and amines (their precursors). The planned research and development project is concerned with the problem of N-nitrosamines in the environment of steelworks and associated coking plants.
Das Projekt "Kleines Biomassekraftwerk fuer den Einsatz im laendlichen Raum" wird vom Umweltbundesamt gefördert und von Arcus Umwelttechnik GmbH durchgeführt. Objective: Based on a 60 kg/h laboratory gasifier an increased type is being proposed as demonstration plant. General Information: The test plant runs with different kinds of biomass and is suited to all sizes below 40 mm and to changing humidity content. The gas produced was almost free of tars. A motor had been in operation for several days already. The plant size of the next generation will be 200 kWel and 200 kwth with the special goal to get automatic continuous operation. Here, the gas cleaning subsystem will gain great importance to enable the intended long motor operation . The following partners will cooperate in the project. -ARCUS company (SME ) as the developer of the gasifier and coordinator of the project. The new plant will be installed in the site of the company supplying the company with electricity and heat and feeding the surplus electricity into the grid. -Stork Comprimo comp. (NL) for the gas cleaning subsystem. Comprimo is an experienced engineering company with special know-how in gas cleaning. It designed and installed the gas cleaning for the Dutch power plant Buggenum. -BIBA Institute (D) being experienced in automation, system analysis and renewable energies. BIBA will participate for plant definition, operational permit and evaluation. -Joanneum (AT), an engineering institute being responsible for environmental items will be involved mainly in the definition and specification of the instrumentation for monitoring gas quality and emissions, and in the performance evaluation with respect to efficiency and environmental effects. -Fachhochschule Hannover (D) being responsible for the measurements and evaluation of the motor. -Zeppelin Comp. (D) will supply the motor and will participate in motor engineering but not in the role of partner but supplier to Arcus. Zeppelin is using motors from Caterpiller and modified them for many combined power stations from sizes of 50 kW to more than 1000 kW. It also tested some motors with most qasifier available during the last 10 years, thus providinq a very concentrated know-how on the gas quality needed for long life time. -Regional farmers and the farming organisation will also participate, not as partners, but as suppilers for biomass and for overcoming logistic problems of storage and steady supply. The Arcus comp. has good access to East Europe and plans to exploit the results of the demonstration within the EU-countries and also Eastern countries. Prime Contractor: ARCUS Umwelttechnik GmbH; Freren; Germany.
Die LANXESS Deutschland GmbH hat mit Datum vom 21.06.2023, zuletzt ergänzt am 20.02.2024, einen Antrag auf Genehmigung nach § 16 BImSchG zur wesentlichen Änderung des Trimethylolpropan-Betriebs durch Umbau der Abluftreinigung (BE 2) mit Installation einer Dampfrückgewinnung und eines Backupsystems auf dem Betriebsgelände Rheinuferstraße 7-9 in 47829 Krefeld gestellt. Der Antragsgegenstand umfasst unter anderem die folgenden Maßnahmen: - apparative Änderungen innerhalb der Betriebseinheiten 1 und 3, - Optimierung der thermischen Abluftreinigungsanlage (TAR) auf dem Gebäude R21 innerhalb der Betriebseinheit 2 durch Umbau und Installation neuen Equipments, - Erweiterung der Betriebseinheit 2 um eine redundante TAR und einen neuen Notauslass, - Neuordnung von AwSV-Anlagen sowie - bauliche Änderungen in und an den Gebäuden R21/R22, R37 und R62.
Das Projekt "Municipal wood energy center Rottweil" wird vom Umweltbundesamt gefördert und von Stadtwerke Rottweil durchgeführt. Objective: Electricity production by gasification of 6350 tonnes per year of fuel wood from forestry waste, communal wood waste and energy plantations in a three stage gas generator in the district of Rottweil. 100 ha of short rotation forestry (poplar and other species) will be planted in a first step. The power output amounts to 990 kWe and additional use of waste heat and gas for heating purpose is foreseen. The production amounts to 7,130,000 kWh. A particular attention will be given to the fuel wood logistics and notably to a 3 months capacity fuel wood storage. The payback time is estimated at 15 years. General Information: The 600 m3 silos, gasifier modules, cogeneration and control room are installed underground. This minimizes noise and also enables the trucks to drive over the silos for direct unloading. The woodchips are dried to approx. 25 per cent moisture content in a vertical rotating conical dryer by means of the available heat from the gas plant. The pre-dried woodchips enter the 3 stage EASIMOD 3500 kWh gasifier. The first stage is an underfeed co-current primary reactor producing primary gas with flying charcoal at about 650 deg. C. Gas is then reformed at approx. 900 deg. C in a separate Venturi burner with secondary air inlet and charcoal/activated carbon extraction. Tars and phenols are cracked. The third step is a separate glowing coke reactor which acts as a safety for tars and phenols cracking and as a gas heating value booster. Gas cleaning consists of dry dedusting in multicyclones, followed by a two-step scrubbing (impingement scrubber plus packed scrubber). The gas is cooled down to approx. 20 deg. C and the heat obtained is then used for predrying the fuel in the woodchips dryer. Ammonia washed out in the scrubbing water is stripped in a packed bed stripper. A waste water treatment plant is foreseen. The dryer, gasifier and gas scrubber are conceived as separate frame-mounted modules. The whole plant runs automatically. The electricity produced will be fed into the medium 20 KV voltage municipal grid. The heat recovered simultaneously will be used in a following step for the heating of a nearby village.
Origin | Count |
---|---|
Bund | 212 |
Land | 29 |
Type | Count |
---|---|
Förderprogramm | 204 |
Text | 24 |
Umweltprüfung | 3 |
unbekannt | 10 |
License | Count |
---|---|
closed | 34 |
open | 202 |
unknown | 5 |
Language | Count |
---|---|
Deutsch | 241 |
Englisch | 49 |
Resource type | Count |
---|---|
Archiv | 5 |
Datei | 6 |
Dokument | 13 |
Keine | 165 |
Webseite | 67 |
Topic | Count |
---|---|
Boden | 209 |
Lebewesen & Lebensräume | 214 |
Luft | 189 |
Mensch & Umwelt | 241 |
Wasser | 175 |
Weitere | 236 |