Das Projekt "Ein Radom-Walk-Modell fuer Schwermetallpartikel in natuerlichen Gewaessern" wird vom Umweltbundesamt gefördert und von Universität Hannover, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen durchgeführt. Das Partikelmodell fuer die Simulation des Metalltransports in natuerlichen Gewaessern baut auf einem Lagrangeschen Ansatz auf. Die hydrodynamischen Groessen sowie der Schwebstofftransport werden mit einem FE-Programm fuer dreidimensionale Stroemungen ermittelt. Die advektive Partikelbewegung wird mit der Euler-Methode beschrieben. Alternativ koennen Mehrschrittverfahren oder Praediktor-Korrektor-Verfahren verwendet werden. In vertikaler Richtung muss gegebenenfalls eine Sinkgeschwindigkeit ws beruecksichtigt werden. Das Random-Walk-Modell ist in dieser Form noch nicht auf den Schwermetalltransport ausgerichtet und kann somit fuer alle Partikel verwendet werden, die konservative Eigenschaften aufweisen. Bei Schwermetallen ist dies jedoch nicht der Fall. Sie koennen in einem Gewaesser in geloester und in partikulaer gebundener Form auftreten, wobei der Wechsel zwischen den Phasen durch Sorption und Remobilisierung erfolgt. Aus Messungen ist der Anteil der partikulaer gebundenen Schwermetalle an der Gesamtmenge des betreffenden Elements bekannt, der als Wahrscheinlichkeitswert direkt in das Modell uebernommen wird. Der Unterschied der geloesten und partikulaer gebundenen Teilchen besteht im Modell in der Sinkgeschwindigkeit sowie im Depostitions- und Erosionsverhalten. Die geloesten Schwermetalle in der Wassersaeule werden nur aufgrund der w-Geschwindigkeit aus den Navier-Stokes-Gleichungen vertikal bewegt. Partikulaer gebundene Schwermetalle erhalten dagegen dieselbe Sinkgeschwindigkeit wie der Schwebstoff, an dem sie angelagert sind. Die Depositionswahrscheinlichkeit der partikulaer gebundenen Schwermetalle haengt in Anlehnung an die Formulierung von Krone von der aktuellen Geschwindigkeit des Partikels sowie von einer vorgegebenen kritischen Depositionsgeschwindigkeit ab. Geloeste Teilchen koennen nicht deponiert werden. Fuer die Modellierung der Erosion ist ebenfalls ein Wahrscheinlichkeitsgesetz implementiert. Es beruecksichtigt die Menge des in einem Zeitschritt resuspendierbaren Materials sowie ueber das Geschwindigkeitsquadrat den Einfluss der Bodenschubspannung. Beispielberechnungen wurden fuer das Gebiet der Wesermuendung durchgefuehrt. Dei Randbedingungen ergeben sich aus den Daten der Messkampagne MASEX-85. Messdaten fuer die Schwermetallablagerungen hat die Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz, im Juni und im Oktober 1983 ermittelt.
Das Projekt "Dreidimensionale numerische Modellierung von kohaesivem Sedimenttransport in Aestuaren" wird vom Umweltbundesamt gefördert und von Universität Hannover, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen durchgeführt. Die komplexe dynamische Struktur von Aestuaren erfordert bei der Modellierung kleine Raum- und Zeitskalen, die dementsprechend mit hohem Rechenaufwand verbunden sind. Obwohl 2D-Vertikalmodelle bei der Modellierung von Aestuaren sehr erfolgreich sind, koennen sie nicht die horizontalen Strukturen aufloesen, wie sie etwa in Salzkeilen beobachtet wurden. Sollen zusaetzlich noch die verschiedenen Transportprozesse wie von Waerme, Salz und Schwebstoff modelliert werden, so sind schnelle Algorithmen erforderlich, die die Moeglichkeiten von Supercomputern nutzen. Im Foerderungszeitraum MAST I wurde fuer das Programmsystem TELEMAC-3D ein Modul fuer den nichtkohaesiven Sedimenttransport entwickelt, welches neben dem Transport auch Prozesse der Sedimentation, Resuspension und Konsolidierung beruecksichtig. Fuer die Turbulenzmodellierung wurde ein Mischungswegansatz gewaehlt, der auch die Daempfungseigenschaften von Schichtstroemungen beruecksichtigt. Das Modell wurde auf das Weseraestuar angewendet und liefert fuer die Hydrodynamik und den Salztransport sehr gute Ergebnisse. Im Foerderungszeitraum MAST II werden die kohaesiven Eigenschaften der Sedimente durch die Erstellung von Modulen fuer die Flokkulation sowie fuer die Bewegung von Fluid Mud (EDF) beruecksichtigt. Zur empirischen Erfassung der Sedimenteigenschaften als auch zur Verifikation des Modells werden bei Delft Hydraulics Experimente an einem Tidal Flume gemacht. Schliesslich wird das Modell auf die Aestuare Weser, Trave, Loire (EDF) und Po (Ente Nationale per I'Energia Elettrica-ENEL) angewendet.