Ein Unternehmen aus Hamburg hat im Rahmen eines Forschungsprojekts eine Software auf den Markt gebracht, mit deren Hilfe ohne manuelles Zutun optimale Tourenpläne generiert werden. Die eingesetzten Transportfahrzeuge senden mittels Telematik ihre genauen Standorte an die Zentrale. Dort berechnet ein evolutionärer Algorithmus, basierend auf dem Abgleich aktueller Verkehrs- und Auftragsdaten, in Echtzeit die ideale Route. Bei drohender Nichteinhaltung von Lieferfristen oder gesetzlichen Ruhezeiten nimmt die Software automatisch Umplanungen vor. Über mobile Endgeräte wird der Fahrer über die Änderungen informiert. Das System hilft nicht nur, Verspätungen zu reduzieren, sondern verkürzt auch die insgesamt gefahrenen Wegstrecken. Dadurch wird der Verkehrsfluss auf den Straßen positiv beeinflusst, Kraftstoff eingespart und die Menge an CO2-Emissionen verringert.
Das Projekt "UR:BAN" wird vom Umweltbundesamt gefördert und von ifak system GmbH durchgeführt. Ziel der 30 Partner aus Wirtschaft und Wissenschaft in der Forschungsinitiative UR:BAN ist es, innovative Fahrerassistenz- und Verkehrsmanagementsysteme für urbane Räume zu entwickeln, zu testen und deren Beitrag zur Verbesserung der Sicherheit und Effizienz zu bewerten. Ein weiterer Aspekt ist die Betrachtung des Menschen mit seinen vielfältigen Rollen im Verkehrssystem. In der Projektsäule 'Vernetztes Verkehrssystem' (UR:BAN-VV) soll die Verkehrseffizienz in urbanen Räumen bei gleichzeitiger Senkung des Emissionsausstoßes optimiert werden. Dieses Ziel soll durch den Ausbau von intelligenter Infrastruktur und deren Vernetzung mit intelligenten Fahrzeugen unter spezieller Berücksichtigung verschiedener Antriebskonzepte (u. a. Elektro- und Hybridantriebe) erreicht werden. Die Schwerpunkte der FuE-Arbeit des ifak liegen in den Teilprojekten 'Smarte Kreuzung' und 'Kooperative Infrastruktur'. Mit der Entwicklung und Erprobung von Schutzeinrichtungen an Verkehrsknoten soll im Zusammenspiel mit der lokalen Verkehrsinfrastruktur ein Beitrag zur Verstetigung des Verkehrs und damit zur Emissionsreduktion sowie zur Erhöhung der Sicherheit insbesondere der schwächeren Verkehrsteilnehmer geleistet werden. Weiterhin soll die Entwicklung und Durchsetzung offener Schnittstellen und Standards mit geeigneten Testwerkzeugen und Handlungsleitfäden für die öffentliche Hand unterstützt werden. Es wird beabsichtigt, die entwickelten Schutzeinrichtungen im Testfeld Düsseldorf zu demonstrieren, zu erproben und deren Wirksamkeit zu untersuchen.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von AS & P - Albert Speer & Partner GmbH durchgeführt. Auf Grund des starken Stadtwachstums und der steigenden Motorisierung seit den 1990er Jahren leidet Hanoi unter zunehmenden Verkehrsproblemen. Das Forschungsprojekt REMON zielt auf die Reduktion der Luftschadstoffe und des Energieverbrauch im städtischen Verkehr. Die Grundidee des Projekts ist das Erfassen der Verkehrszustände in Echtzeit mittels des Floating Car Data (FCD)- und Floating Phone Data (FPD)-Ansatzes. Dabei werden GPS-Daten von GPS-Einheiten in Fahrzeugen (Autos, Busse, Taxen) sowie GPS-fähigen Mobilfunkgeräten von Motorradfahrern erfasst. Gerade das Motorrad als Hauptverkehrsmittel Hanois bedingt die Verwendung der FPD-Methode. Diese Rohdaten werden in Informationen für zahlreiche Anwendungen umgewandelt: von der Information der Verkehrsteilnehmer über die aktuelle Verkehrslage (Internet, Radio, Mobilfunk) bis hin zu Verkehrssteuerung sowie langfristige Planungsmaßnahmen zur Reduzierung der Verkehrsprobleme. Ein Ergebnis des Projekts ist die Digitalisierung und Visualisierung der Verkehrslage. Die lokale Stadtregierung, Verkehrsbehörden, Stadt- und Verkehrsplaner werden in die Lage versetzt, ein effizientes Monitoring für Hanois Verkehrsinfrastruktur durchzuführen. Die Analyse der Verteilungsmuster und der Geschwindigkeiten erlauben in Kombination mit der Kenntnis der spezifischen Verkehrsbedingungen vor Ort ein Verstehen der Prozessdynamiken des Verkehrs. Verkehrsmanagement, Stadt- und Verkehrsplanung können somit optimiert werden. Letztlich gleicht das im Projekt aufzubauende Echtzeit-Verkehrsinformationssystem einem dynamischen Sensor bzw. einem 'verteilen Netzwerk von Sensoren' für Geschwindigkeiten, Fahrzeugemissionen und Verkehrsfragen wie Erreichbarkeit und Verkehrsmuster. In dem interdisziplinären Forschungsprojekt REMON beteiligen sich insgesamt sieben deutsche Projektpartner: AS&P - Albert Speer & Partner GmbH, CPA Systems GmbH, DELPHI IMM GmbH, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Freie Universität Berlin (FU), Internationale Akademie (INA) gGmbH an der Freien Universität Berlin und Technische Universität Darmstadt (TUD). Auf vietnamesischer Seite wirken das Transport Development and Strategy Institute (TDSI) und die University of Transport and Communication (UTC) in Hanoi sowie die Vietnamese-German University (VGU) mit ihrem Verkehrsforschungszentrum Vietnamese-German Transport Research Center mit. FU, CPA und DELPHI IMM bauen ein Geographisches Informationssystem auf und entwickeln ein Stadtwachstumsmodell. Sie erstellen auch eine digitale Straßenkarte, die die Grundlage für das FCD/FPD-System ist. DLR entwickelt das FCD/FPD-System bzw. Echtzeit-Verkehrsinformationssystem. TUD beschäftigt sich mit dem Verkehrsmanagement und der Strategieentwicklung. INA und AS&P konzentrieren sich auf die künftige Stadt- und Verkehrsentwicklung. Diese werden in Szenarien abgebildet, um daraus Planungsansätze zu entwickeln. AS&P wird exemplarisch ein oder mehrere Stadtteile neu planen. Das Projektmanagement obliegt INA.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Universität Berlin, Institut für Geographische Wissenschaften, Fachrichtung Fernerkundung und Geoinformatik durchgeführt. Hanoi hat, wie viele andere asiatische Städte, massive Probleme mit dem anwachsenden Verkehrsaufkommen. Die Hauptziele des Projekts sind die Reduktion von Luftschadstoffen und des Energieverbrauchs durch eine Verbesserung des Verkehrssystems Hanois. Dazu wird das Verkehrsaufkommen mit Hilfe eines Floating Car Data (FCD)- und Floating Phone Data (FPD)-Systems erfasst. Diese Informationen werden den Verkehrsteilnehmern im Internet, Radio und auf Mobilfunkgeräten zur Verfügung gestellt. FPD wird insbesondere für motorisierte Zweiräder, dem Hauptverkehrsmittel in Hanoi, verwendet. Die Analyse der Verteilungsmuster und der Geschwindigkeiten erlauben in Kombination mit der Kenntnis der spezifischen Verkehrsbedingungen vor Ort ein Verstehen der Prozessdynamiken des Verkehrs. Stadt- und Verkehrsplanung können somit optimiert werden. Die präzisen Kenntnisse über die Verkehrscharakteristika und die Stadtentwicklung sind die Basis für das Entwickeln und Planen einer nachhaltigen, integrierten Stadt. Die Partner FU, CPA und delphi IMM bauen ein Geographisches Informationssystem auf. Dieses ist eine Grundlage für das FCD/FPD-System, das das DLR entwickelt. FGVV beschäftigt sich mit dem Verkehrsmanagement und der Strategieentwicklung, während INURBAN und AS&P die künftige Stadt- und Verkehrsentwicklung in Szenarien abbilden, um daraus Planungsansätze zu entwickeln. All diese Schritte erfolgen in enger Kooperation mit den vietnamesischen Partnern.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Verkehr, Fachgebiet Verkehrsplanung und Verkehrstechnik durchgeführt. Hanoi hat, wie viele andere asiatische Städte, massive Probleme mit dem anwachsenden Verkehrsaufkommen. Die Hauptziele des Projekts sind die Reduktion von Luftschadstoffen und des Energieverbrauchs durch eine Verbesserung des Verkehrssystems Hanois. Dazu wird das Verkehrsaufkommen mit Hilfe eines Floating Car Data (FCD)- und Floating Phone Data (FPD)-Systems erfasst. Diese Informationen werden den Verkehrsteilnehmern im Internet, Radio und auf Mobilfunkgeräten zur Verfügung gestellt. FPD wird insbesondere für motorisierte Zweiräder, dem Hauptverkehrsmittel in Hanoi, verwendet. Die Analyse der Verteilungsmuster und der Geschwindigkeiten erlauben in Kombination mit der Kenntnis der spezifischen Verkehrsbedingungen vor Ort ein Verstehen der Prozessdynamiken des Verkehrs. Stadt- und Verkehrsplanung können somit optimiert werden. Die präzisen Kenntnisse über die Verkehrscharakteristika und die Stadtentwicklung sind die Basis für das Entwickeln und Planen einer nachhaltigen, integrierten Stadt. Die Partner FU, CPA und delphi IMM bauen ein Geographisches Informationssystem auf. Dieses ist eine Grundlage für das FCD/FPD-System, das das DLR entwickelt. FGVV beschäftigt sich mit dem Verkehrsmanagement und der Strategiebewertung, der Strategieentwicklung während INURBAN und AS&P die künftige Stadt- und Verkehrsentwicklung in Szenarien abbilden, um daraus Planungsansätze zu entwickeln. All diese Schritte erfolgen in enger Kooperation mit den vietnamesischen Partnern UTC, VGU und TDSI.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Internationale Akademie Berlin für innovative Pädagogik, Psychologie und Ökonomie gGmbH (INA), Institut für Internationale Stadtforschung (InUrban) durchgeführt. Auf Grund des starken Stadtwachstums und der steigenden Motorisierung seit den 1990er Jahren leidet Hanoi unter zunehmenden Verkehrsproblemen. Das Forschungsprojekt REMON zielt auf die Reduktion der Luftschadstoffe und des Energieverbrauch im städtischen Verkehr. Die Grundidee des Projekts ist das Erfassen der Verkehrszustände in Echtzeit mittels des Floating Car Data (FCD)- und Floating Phone Data (FPD)-Ansatzes. Dabei werden GPS-Daten von GPS-Einheiten in Fahrzeugen (Autos, Busse, Taxen) sowie GPS-fähigen Mobilfunkgeräten von Motorradfahrern erfasst. Gerade das Motorrad als Hauptverkehrsmittel Hanois bedingt die Verwendung der FPD-Methode. Diese Rohdaten werden in Informationen für zahlreiche Anwendungen umgewandelt: von der Information der Verkehrsteilnehmer über die aktuelle Verkehrslage (Internet, Radio, Mobilfunk) bis hin zu Verkehrssteuerung sowie langfristige Planungsmaßnahmen zur Reduzierung der Verkehrsprobleme. Ein Ergebnis des Projekts ist die Digitalisierung und Visualisierung der Verkehrslage. Die lokale Stadtregierung, Verkehrsbehörden, Stadt- und Verkehrsplaner werden in die Lage versetzt, ein effizientes Monitoring für Hanois Verkehrsinfrastruktur durchzuführen. Die Analyse der Verteilungsmuster und der Geschwindigkeiten erlauben in Kombination mit der Kenntnis der spezifischen Verkehrsbedingungen vor Ort ein Verstehen der Prozessdynamiken des Verkehrs. Verkehrsmanagement, Stadt- und Verkehrsplanung können somit optimiert werden. Letztlich gleicht das im Projekt aufzubauende Echtzeit-Verkehrsinformationssystem einem dynamischen Sensor bzw. einem 'verteilen Netzwerk von Sensoren' für Geschwindigkeiten, Fahrzeugemissionen und Verkehrsfragen wie Erreichbarkeit und Verkehrsmuster. In dem interdisziplinären Forschungsprojekt REMON beteiligen sich insgesamt sieben deutsche Projektpartner: AS&P - Albert Speer & Partner GmbH, CPA Systems GmbH, DELPHI IMM GmbH, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Freie Universität Berlin (FU), Internationale Akademie (INA) gGmbH an der Freien Universität Berlin und Technische Universität Darmstadt (TUD). Auf vietnamesischer Seite wirken das Transport Development and Strategy Institute (TDSI) und die University of Transport and Communication (UTC) in Hanoi sowie die Vietnamese-German University (VGU) mit ihrem Verkehrsforschungszentrum Vietnamese-German Transport Research Center mit. FU, CPA und DELPHI IMM bauen ein Geographisches Informationssystem auf und entwickeln ein Stadtwachstumsmodell. Sie erstellen auch eine digitale Straßenkarte, die die Grundlage für das FCD/FPD-System ist. DLR entwickelt das FCD/FPD-System bzw. Echtzeit-Verkehrsinformationssystem. TUD beschäftigt sich mit dem Verkehrsmanagement und der Strategieentwicklung. INA und AS&P konzentrieren sich auf die künftige Stadt- und Verkehrsentwicklung. Diese werden in Szenarien abgebildet, um daraus Planungsansätze zu entwickeln. AS&P wird exemplarisch ein oder mehrere Stadtteile neu planen. Das Projektmanagement obliegt INA.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von DELPHI IMM - InformationsMusterManagement GmbH durchgeführt. Auf Grund des starken Stadtwachstums und der steigenden Motorisierung seit den 1990er Jahren leidet Hanoi unter zunehmenden Verkehrsproblemen. Das Forschungsprojekt REMON zielt auf die Reduktion der Luftschadstoffe und des Energieverbrauch im städtischen Verkehr. Die Grundidee des Projekts ist das Erfassen der Verkehrszustände in Echtzeit mittels des Floating Car Data (FCD)- und Floating Phone Data (FPD)-Ansatzes. Dabei werden GPS-Daten von GPS-Einheiten in Fahrzeugen (Autos, Busse, Taxen) sowie GPS-fähigen Mobilfunkgeräten von Motorradfahrern erfasst. Gerade das Motorrad als Hauptverkehrsmittel Hanois bedingt die Verwendung der FPD-Methode. Diese Rohdaten werden in Informationen für zahlreiche Anwendungen umgewandelt: von der Information der Verkehrsteilnehmer über die aktuelle Verkehrslage (Internet, Radio, Mobilfunk) bis hin zu Verkehrssteuerung sowie langfristige Planungsmaßnahmen zur Reduzierung der Verkehrsprobleme. Ein Ergebnis des Projekts ist die Digitalisierung und Visualisierung der Verkehrslage. Die lokale Stadtregierung, Verkehrsbehörden, Stadt- und Verkehrsplaner werden in die Lage versetzt, ein effizientes Monitoring für Hanois Verkehrsinfrastruktur durchzuführen. Die Analyse der Verteilungsmuster und der Geschwindigkeiten erlauben in Kombination mit der Kenntnis der spezifischen Verkehrsbedingungen vor Ort ein Verstehen der Prozessdynamiken des Verkehrs. Verkehrsmanagement, Stadt- und Verkehrsplanung können somit optimiert werden. Letztlich gleicht das im Projekt aufzubauende Echtzeit-Verkehrsinformationssystem einem dynamischen Sensor bzw. einem 'verteilen Netzwerk von Sensoren' für Geschwindigkeiten, Fahrzeugemissionen und Verkehrsfragen wie Erreichbarkeit und Verkehrsmuster. In dem interdisziplinären Forschungsprojekt REMON beteiligen sich insgesamt sieben deutsche Projektpartner: AS&P - Albert Speer & Partner GmbH, CPA Systems GmbH, DELPHI IMM GmbH, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Freie Universität Berlin (FU), Internationale Akademie (INA) gGmbH an der Freien Universität Berlin und Technische Universität Darmstadt (TUD). Auf vietnamesischer Seite wirken das Transport Development and Strategy Institute (TDSI) und die University of Transport and Communication (UTC) in Hanoi sowie die Vietnamese-German University (VGU) mit ihrem Verkehrsforschungszentrum Vietnamese-German Transport Research Center mit. FU, CPA und DELPHI IMM bauen ein Geographisches Informationssystem auf und entwickeln ein Stadtwachstumsmodell. Sie erstellen auch eine digitale Straßenkarte, die die Grundlage für das FCD/FPD-System ist. DLR entwickelt das FCD/FPD-System bzw. Echtzeit-Verkehrsinformationssystem. TUD beschäftigt sich mit dem Verkehrsmanagement und der Strategieentwicklung. INA und AS&P konzentrieren sich auf die künftige Stadt- und Verkehrsentwicklung. Diese werden in Szenarien abgebildet, um daraus Planungsansätze zu entwickeln. AS&P wird exemplarisch ein oder mehrere Stadtteile neu planen. Das Projektmanagement obliegt INA.
Das Projekt "Teilvorhaben: 3D-Punktwolkenverarbeitung und SLAM (WISP-SLAM)" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Institut für Informatik, Informatik VII Robotik und Telematik durchgeführt. Gesamtziel des Vorhabens ist die Entwicklung eines drohnenbasierten Sensorsystems für die Inspektion von Windkraftanlagen. Hierbei sollen insbesondere schwer zugängliche und kritische Stellen wie beispielsweise Rotorblätter in bislang unerreichter Genauigkeit digitalisiert und vermessen werden. Die Sensorik besteht aus Laserscannern, Kameras, Thermokameras und IMUs zum Einsatz, um ein möglichst umfassendes, multimodales Modell der Anlage zu erhalten. Durch den Einsatz von Drohnen kann die Inspektion im Vergleich zu aktuellen Methoden schnell, effizient und sicher durchgeführt werden. Die Idee des Teilprojektes ist, luftgestütztes Laserscanning so zu miniaturisieren und Drohnen, d.h. kleine UAVs, mit entsprechender Laserscan-Sensorik auszustatten, so dass die Inspektions-aufgabe kostengünstig gelöst werden kann. Dazu sollen die UAVs die erstellten 3D-Karten auch selbst nutzen. Es müssen die Verfahren und Algorithmen so angepasst werden, dass die Ergebnisse, d.h. die 3D-Karten in Echtzeit vorliegen. Das Vorhandensein einer detailreichen 3D-Karte mit Zusatzinformationen (Fotos, Thermografie, Interpretationen) bietet die Möglichkeit in kurzer Zeit, WKAs zu inspizieren und den Zustand zu dokumentieren. Die wissenschaftlichen Ziele des Vorhabens beinhalten zum einen die Lösung des Problems der simultanen Lokalisierung und Kartierung (SLAM, vgl. Abschnitt 2) eines UAVs. Ist SLAM gelöst, muss die 3D-Punktwolke in ein 3D-Modell umgewandelt, was durch Anwendung von neuronalen KI-Methoden gelingen soll. Eine weitere wissenschaftliche Herausforderung ist die Datennachverarbeitung und Datenanalyse. Hier sollen neue Methoden zur Änderungsdetektion umgesetzt werden. Auf technischer Seite ist ein Ziel des Projektes eine effiziente Lösung des Kalibrierproblems zu finden.
Das Projekt "Demand-Response mit Wasserbetten (DRWB)" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Telematik E-17 durchgeführt. Ziel der Bundesregierung ist es, dass bis zum Jahr 2050 mindestens 80% des deutschen Stromverbrauchs aus erneuerbaren Energien zu produzieren werden. Der meiste Strom wird aus Wind- und Solarfarmen stammen, die wetterabhängig zeitweise Leistung deutlich über oder unter dem Bedarf produzieren werden. Demand-Response-Ansätze tragen zur Ausbalancierung von Produktion und Verbrauch bei, indem elektrische Lasten Ihre Leistungsaufnahme an die aktuelle Verfügbarkeit von Leistung anpassen. Das ist insbesondere bei Geräten mit thermischen Energiespeichern möglich, wie beispielsweise Heißwasserboiler oder Wasserbetten in Haushalten, bei denen die Wärmeproduktion aus Strom in anwendungsspezifischen Grenzen zeitlich verschoben werden kann. Dabei haben z. B. die ca. 1 Million Wasserbetten in Deutschland Heizungen mit einer Gesamtleistung von etwa 250 MW die in der Größenordnung von 0,1% des deutschen Stromverbrauchs verursachen. In diesem Projekt wird untersucht, welchen Beitrag Demand-Response-Verfahren für Wasserbetten zur Energiewende leisten können. Es ist ein Problem der multikriteriellen Optimierung. Neben der Maximierung der Wirkung für die Ausbalancierung von Stromproduktion und -verbrauch müssen der Gesamtenergiebedarf und die zusätzlichen Kosten minimiert sowie die Benutzeranforderungen erfüllt werden. Wasserbetten sollen eigenständige Geräte bleiben, die heute ohne neue Infrastrukturen der Stromanbieter oder Netzbetreiber eingesetzt werden können. Die erweiterte Temperaturregelung muss sicherstellen, dass die Wassertemperatur im engen Komfortbereich ist, wenn Menschen im Bett liegen. Da anders als bei großen industriellen Lasten der Strombedarf und damit die Wirkung eines einzelnen Gerätes für Demand-Response klein ist, müssen auch die dafür anfallenden Kosten für Herstellung, Installation und Betrieb minimiert werden. Einen Beitrag dazu wird eine durch die Regelung ermöglichte Reduzierung des Gesamtenergiebedarfs erbringen. Die Wasserbetten müssen für die Benutzer ohne großen Aufwand konfigurierbar sein und dürfen keine Daten über deren Verhalten Preis geben. Im Projekt wird ein Konzept für Demand-Response mit Wasserbetten entwickelt und simulativ sowie mit einem Prototyp untersucht. Als Prototyp wird ein reales Wasserbett um ein universelles Mess- und Regelmodul ergänzt. Mit ihm wird ein thermisches Modell für Wasserbetten entwickelt und validiert. Unterschiedliche Temperatur-Regelalgorithmen für Demand-Response und die Reduzierung des Gesamtenergiebedarfs werden entwickelt. Sie werden mit dem Prototyp erprobt und simulativ verglichen. Dabei wird auch der Aufwand für die Integration in Stromnetze, die Schätzbarkeit der Lastprofile und für das Stromnetz problematische große gleichzeitige Laständerungen vieler Wasserbetten betrachtet.
Das Projekt "Beitrag der Telematik zu einer nachhaltigen Raum- und Stadtentwicklung" wird vom Umweltbundesamt gefördert und von Bundesforschungsanstalt für Landeskunde und Raumordnung durchgeführt.