API src

Found 25030 results.

Related terms

Model Output Statistics for SAMARKAND (38696)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Project OTC-Genomics: Environmental and microbial time series data from the Warnow estuary and the Baltic Sea coast

Estuaries and coasts are characterized by ecological dynamics that bridge the boundary between habitats, such as fresh and marine water bodies or the open sea and the land. Because of this, these ecosystems harbor ecosystem functions that shaped human history. At the same time, they display distinct dynamics on large and small temporal and spatial scales, impeding their study. Within the framework of the OTC-Genomics project, we compiled a data set describing the community composition as well as abiotic state of an estuary and the coastal region close to it with unprecedented spatio-temporal resolution. We sampled fifteen locations in a weekly to twice weekly rhythm for a year across the Warnow river estuary and the Baltic Sea coast. From those samples, we measured temperature, salinity, and the concentrations of Chlorophyll a, phosphate, nitrate, and nitrite (physico-chemical data); we sequenced the 16S and 18S rRNA gene to explore taxonomic community composition (sequencing data and bioinformatic processing workflow); we quantified cell abundances via flow cytometry (flow cytometry data); and we measured organic trace substances in the water (organic pollutants data). Processed data products are further available on figshare.

Baustart am LANUK NRW

In diesem Jahr hat das Landesamt für Natur, Umwelt und Klima des Landes Nordrhein-Westfalen (LANUK NRW) neue Spezialfahrzeuge in Betrieb genommen, die im Umwelt- oder Bevölkerungsschutz bei Schadens- und Gefahrenfällen zum Einsatz kommen. Nun errichtet der Bau- und Liegenschaftsbetrieb des Landes Nordrhein-Westfalen (BLB NRW) eine Halle für die neuen LKW mit hoch sensibler Ausstattung. Nachdem die Baustelle am LANUK-Standort Essen eingerichtet wurde, konnten die Tiefbauarbeiten pünktlich Anfang November starten. Das neue Gebäude mit einer Fläche von rund 280 Quadratmetern hat nicht nur Platz für drei speziell ausgerüstete Sondereinsatzfahrzeuge, sondern bietet auch Umkleidemöglichkeiten und Sanitäranlagen für die Mitarbeiterinnen und Mitarbeiter des LANUK NRW. Vor der eingeschossigen Halle in Stahlkonstruktion wird zusätzlich ein Waschplatz für die Fahrzeuge und ein Bereich für spezielle Luftqualitätsmessungen entstehen. Besondere Anforderungen Die sensible Technik an Bord der Fahrzeuge stellt besondere Anforderungen an den Bau der funktionalen Halle. In den Fahrzeugen des LANUK-Sondereinsatzes stehen unterschiedliche Instrumente zur Messung von Luftschadstoffen bereit. Fest installierte und mitgeführte Messtechnik muss sofort einsatzbereit sein, wenn die LANUK-Fachleute zu Bränden, Stofffreisetzungen oder anderen Ereignissen mit möglichen Umweltschäden gerufen werden. Sie können damit mehr als 1.000 Stoffe messen oder Proben mit einem Spezialmikroskop mehr als 100.000-fach vergrößern, um gefährliche Bestandteile zu identifizieren. Zur Bestimmung zahlreicher Stoffe befindet sich weitere mobile Messtechnik an Bord. Aufgrund der sensiblen Technik in den Fahrzeugen darf die Temperatur in der Halle nicht unter sieben Grad Celsius sinken. Die Überwachung dieser Grenztemperatur wird durch eine spezielle Sensorik im Gebäude erfolgen. Eine moderne Wärmepumpe sorgt für die entsprechende Wärmeversorgung des Neubaus. Auf dem Dach wird eine Photovoltaikanlage installiert, die jährlich rund 54.000 Kilowattstunden klimafreundlichen Solarstrom produziert. Die Leistung der 120 Module wird direkt vor Ort genutzt. Überschüssiger Strom wird eingespeichert und für die Versorgung der Spezialfahrzeuge genutzt. Ergänzend wird eine LED-Beleuchtung installiert, um eine energieeffiziente Beleuchtung sicherzustellen. Der BLB NRW ist Eigentümer und Vermieter fast aller Immobilien des Landes Nordrhein-Westfalen. Mit rund 4.000 Gebäuden und einer Mietfläche von etwa 10,3 Millionen Quadratmetern verantwortet der BLB NRW eines der größten Immobilienportfolios Europas. Seine Dienstleistungen umfassen unter anderem die Bereiche Entwicklung und Planung, Bau und Modernisierung sowie Bewirtschaftung und Verkauf von technisch und architektonisch hoch komplexen Immobilien. Darüber hinaus plant und realisiert der BLB NRW im Rahmen des Bundesbaus die zivilen und militärischen Baumaßnahmen der Bundesrepublik Deutschland in Nordrhein-Westfalen. Der BLB NRW beschäftigt mehr als 3.100 Mitarbeiterinnen und Mitarbeiter an acht Standorten. Weitere Informationen unter www.blb.nrw.de Fotos in druckfähiger Qualität stehen Ihnen zum Download hier zur Verfügung: https://membox.nrw.de/index.php/s/aaBS16wyxhZwy5t Passwort: blbnrw BLB NRW, Niederlassung Duisburg Presse und Kommunikation Liane Karsten Mail: presse(at)blb.nrw.de Tel.: +49 203 987 11605 Mobil: +49 152 2269 5605 Landesamt für Natur, Umwelt und Klima NRW Pressestelle Birgit Kaiser de Garcia Mail: pressestelle(at)lanuk.nrw.de Tel.: +49 2361/305-1860 www.lanuk.nrw.de zurück

Luftmessstelle Nr. 0601 in Raunheim

Dieser Datensatz enthält Informationen der Luftmessstelle Nr. 0601 in Raunheim. Es werden nur die an der Station erfassten Messwerte der letzten 20 Jahre publiziert. Ältere Daten können auf Anfrage erhalten werden. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.

Mechanisms of flowering time control by the novel flowering time genes GNC and GNL

This project aims at understanding how flowering is controlled by gibberellin (GA) and cold temperature and how flowering time control is linked to frost tolerance. This is based on our finding that transcription factors of the GNÜLLER family, notably the GAregulated genes GNC and GNL, delay flowering and at the same time confer frost tolerance in Arabidopsis thaliana. We also observed that GNC/GNL expression is activated by FLC in response to intermittent cold temperatures that delay flowering and that GNC/GNL expression confers frost tolerance by activating cold-responsive gene expression. Using molecular and genetic approaches we now want to examine (1) how GNC/GNL integrate GA- and FLCdependent signals to control flowering time, (2) whether expression differences of GNC/GNL can explain differences in flowering and frost tolerance in 5 selected Arabidopsis accessions, and (3) whether and how GNC/GNL control flowering time and frost tolerance in crop species. Understanding how GA signalling, flowering time and frost tolerance are controlled and how these signalling pathways are interconnected may allow to accelerate breeding of frost tolerance, a desirable but difficult-to-assess trait, and flowering time, an easy-to-assess trait, in the context of knowledge-based breeding programs.

Model Output Statistics for Essen-Bredeney (10410)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Digitalisierte Wärmespeicher für die Energiewende

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Klimaerlebnisbaum - Ludwigkai - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Dynamik des westantarktischen Eisschildes zwischen dem Rossmeer und dem Amundsenmeer aus seismischen Analysen und Bohrdaten (IODP Expeditionen 379 und 374)

Der submarin aufliegende westantarktische Eisschild (WAIS) reagiert mutmaßlich höchst empfindlich gegenüber klimatischen Änderungen, besonders in Zeiten ansteigender globaler atmosphärischer Temperaturen. Der Amundsenmeer-Sektor des WAIS ist aufgrund des beobachteten Eindringens von warmen zirkumpolaren Tiefenwasser auf den Schelf und den damit ausgelösten subglazialen Schmelzvorgängen besonders betroffen. Diese Beobachtungen und damit verbundenen Notwendigkeiten, die paläo-eisschilddynamischen Prozesse für eine verbesserte zukünftige Meeresspiegelprojektion genauer zu analysieren, waren ausschlaggebend dafür, dass sowohl das Rossmeer als auch das Amundsenmeer als Zielgebiete für die beiden IODP-Bohrexpeditionen 374 (Anfang 2018) und 379 (Anfang 2019) bewilligt wurden. Beide Regionen sind mit einem kontinuierlichen seismischen Transekt verbunden, der mit weiteren seismischen Profilen auf einer ebenfalls für 2019 geplanten russischen Expedition ergänzt werden soll. Die seismischen Profile werden einen differentiellen und detaillierten Vergleich zwischen den Sequenzstratigraphien des Amundsenmeeres und des Rossmeeres ermöglichen. In einer engen Kooperation mit den wissenschaftlichen Teams beider IODP-Expeditionen und den russischen Partnern werden die alten und neuen Seismikdaten analysiert, um eine präzise Studie über die seismisch-stratigraphischen Sequenzen, Einheiten und Horizonte in den Bohrgebieten und zwischen den beiden Regionen zu erstellen. Das Netzwerk der seismischen Profile knüpft direkt an die Bohrlokationen der IODP Expeditionen 374 und 379 mittels einer sorgfältigen Seismik-zu-Kernlog-Integration, in die die Bohrkerndaten, die Messdaten der physikalischen Eigenschaften und die Bohrlochmessungen einfließen. Die erzeugten synthetischen Seismogramme helfen bei der Verknüpfung mit den Daten der Seismikprofile. Die Erstellung eines transregionalen Modells der Alters- und Zusammensetzungsstratigraphie entlang der Amundsenmeer- und Rossmeer-Sektoren wird ein erstes Ziel des Projektes sein. Dabei sollen die Entwicklungsmuster der vorglazialen und glazial geprägten Sedimentationseinheiten herausgearbeitet werden, um den Übergang vom primären 'Treibhaus'klima zum 'Eishaus'klima zu charakterisieren. In der zweiten Synthesephase sollen die identifizierten glazial-dominanten Sedimentationsprozesse genutzt werden, um fließdynamische Muster des WAIS in den Amundsenmeer- und Rossmeerregionen abzuleiten. Das Sedimentationsmodell wird zeigen, ob sich z.B. die vergangene Ausflussdynamik des WAIS gleichmäßig oder sehr unterschiedlich zwischen den Regionen verhalten hat.

GTS Bulletin: SAEO33 EEEI - Surface data (details are described in the abstract)

The SAEO33 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SA): Aviation routine reports A1A2 (EO): Estonia (Remarks from Volume-C: NilReason)

1 2 3 4 52501 2502 2503