API src

Found 22 results.

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

Das Projekt "Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Über Kohlenstoff-Entnahme aus der Atmosphäre bis hin zum Erreichen des Ziels des Pariser Klimakommens: Temperature Stabilisation

Das Projekt "Über Kohlenstoff-Entnahme aus der Atmosphäre bis hin zum Erreichen des Ziels des Pariser Klimakommens: Temperature Stabilisation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Algivore Cercozoa prägen die Zusammensetzung der Gemeinschaft von Bodenkrusten, der dominanten Vegetation in Polarregionen

Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Algivore Cercozoa prägen die Zusammensetzung der Gemeinschaft von Bodenkrusten, der dominanten Vegetation in Polarregionen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Räuber-Beute-Beziehungen zwischen Bakterien und ihren eukaryotischen Räubern werden seit langem in der terrestrischen Ökologie untersucht, jedoch werden die Interkationen zwischen Mikroeukaryoten oft vernachlässigt. Mikroalgen nehmen eine Schlüsselposition als phototrophe Organismen in den marinen und Süßwasserökosystemen der Antarktis und Arktis ein; die meiste Energie und die meisten Nährstoffe werden durch diese zu höheren trophischen Ebenen kanalisiert. In diesem Kontext fehlen Studien in den terrestrischen Ökosystemen der Antarktis. Die terrestrische Vegetation der Antarktis wird dominiert durch kryptogamen Bewuchs mit einer Vielzahl und hoher Abundanz von Mikroalgen. Bis zu 55% des eisfreien Bodens der antarktischen Halbinsel und bis zu 70% im arktischen Spitzbergen werden von biologischen Bodenkrusten (Biokrusten) bedeckt. Diese Zahlen werden zukünftig auf Grund des Klimawandels und der daraus folgenden Erwärmung der Polarregionen steigen (“Arctic Greening”). Man kann daher annehmen, dass ein großer Anteil der Primärproduktion in den Polarregionen durch Mikroalgen in Biokrusten realisiert wird. Dennoch fehlt die Verbindung zu höheren trophischen Ebenen; insbesondere, wenn man bedenkt, dass in der Antarktis algenfressende Metazoen selten und artenarm sind. Cercozoa sind eine der häufigsten algenkonsumierenden einzelligen Eukaryoten (Protisten) in terrestrischen Systemen; vorläufige Ergebnisse zeigen: algenkonsumierende Cercozoa dominieren die mikrobielle Gemeinschaft in den Biokrusten der Polarregionen. Wir werden zum ersten Mal die Räuber-Beute-Beziehung in Biokrusten zwischen den Algen als Primärproduzenten und den wichtigsten Algenkonsumenten erforschen, um so ein vollständigeres Bild des terrestrischen Nahrungsnetzes in den beiden Polarregionen zu erhalten. Um das zu erreichen, kombinieren wir einen Barcode-basierten Hochdurchsatz-Illumina Ansatz mit klassischen Kulturexperimenten, welche Aufschluss über ökologische Funktionen der einzelnen Organismen liefern. Damit erhalten wir erstmalig ein umfassendes Bild der Räuber-Beute-Beziehung zwischen Mikroalgen und ihren Räubern, den Cercozoa, für das terrestrische Ökosystem in Arktis und Antarktis. Diese Daten werden zur Beantwortung der folgenden Fragen beitragen: Wie wichtig ist das terrestrische Nahrungsnetz in den Polarregionen? Und hat die Klimaerwärmung das Potential diese Interaktionen zu verändern?

Küsten-Niños im Pazifik - die Rolle des äquatorialen Wärmeinhaltes und Bezug zur Ausbreitung der Meeresoberflächentemperaturanomalien (PaCoNi)

Das Projekt "Küsten-Niños im Pazifik - die Rolle des äquatorialen Wärmeinhaltes und Bezug zur Ausbreitung der Meeresoberflächentemperaturanomalien (PaCoNi)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Zu Beginn des Jahres 2017 sorgte eine starke Erwärmung des Wassers vor der peruanischen Küste im südöstlichen tropischen Pazifik für starke Niederschläge und Überschwemmungen in Peru und Ecuador und hatte schwerwiegende Auswirkungen auf das Ökosystem und die peruanische Gesellschaft. Das beantragte Projekt zielt darauf ab, solche warmen Küsten-Niño-Ereignisse, die nicht mit beckenweiten Anomalien der Meeresoberflächentemperatur (SST) im tropischen Pazifik zusammenhängen, besser zu verstehen. Neuere Arbeiten der Antragstellerin weisen darauf hin, dass es für den Zusammenhang zwischen SST-Anomalien im küstennahen und zentralen äquatorialen Pazifik von zentraler Bedeutung ist, ob sich der äquatoriale Pazifik in einer Phase mit hohem oder geringen Wärmeinhalt befindet. Diese Hypothese soll in dieser Studie mit gezielten Klimamodellexperimenten untersucht werden. Das Projekt wird die Bedeutung des äquatorialen Wärmeinhaltes für die westwärtige Ausbreitung von SST-Anomalien in den äquatorialen Pazifik bestimmen und dadurch auch neue Erkenntnisse über die viel diskutierte multidekadische Variabilität in der Ausbreitungsrichtung von mit El Niño verbundenen SST-Anomalien liefern. Diese Erkenntnisse können möglicherweise Auswirkungen für die Vorhersagen von El Niño haben.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Pol zu Pol Austausch: Klima begünstigter Parasitendruck auf cyanobakterielle Matten und deren ökosystemare Antwort

Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Pol zu Pol Austausch: Klima begünstigter Parasitendruck auf cyanobakterielle Matten und deren ökosystemare Antwort" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Ein Vergleich der Artendiversität von antarktischen und arktischen Cyanobakterienmatten (Cyanomatten) durch unsere Arbeitsgruppe weist auf eine überraschend hohe Übereinstimmungsrate der Arten hin (Kleinteich et al. 2017). Da es höchst unwahrscheinlich ist, dass sich diese Arten unabhängig voneinander in beiden polaren Regionen entwickelten, wird vermutet, dass Vögel oder Aerosole den Transport von Cyanomatten von der Arktis in die Antarktis ermöglichen. Entsprechend untersucht dieses Projekt den Einfluss des Klimawandels auf die potentielle Etablierung von Temperatur-toleranteren, nicht-endemischen Cyanobakterien (Xeno-Cyano) und deren Parasiten (Xeno-Parasiten) in antarktischen Gebieten und welche Konsequenzen dies für das antarktische Cyanomatten-Ökosystem hat. Wir konnten durch frühere Experimente den Einfluss von erhöhter Temperatur auf die Artendiversität und Toxinproduktion in antarktischen Cyanomatten nachweisen (Kleinteich et al. 2012). Da antarktische Gebiete einem kontinuierlichen Verlust der Eisdecke ausgesetzt sind, liegt die Vermutung nahe, dass nicht-endemische Cyanobakterien bisher unbesiedelte Gebiete erschließen bzw. werden endemische Cyanobakterien aufgrund ihrer schlechteren Anpassung an nicht-endemische Parasiten aus bereits besiedelten Gebieten verdrängt. Entsprechend hat dieses Projekt vier Hauptziele: Fest zu stellen ob 1.) sich in historischen Cyanomatten (1902, Scott Expedition) und den letzten 30 Jahren (1990, 1999/2000, 2010, 2021/2022) aus Rothera, Byers Halbinsel und McMurdo diese Xeno-Cyano und -Parasiten nachweisen lassen; 2.) Cyanomatten aus Spitzbergen eine vergleichbare Speziesverteilung (Cyanobakterien, Viren und Pilze) aufweisen wie auf der antarktischen Halbinsel (vermuteter Haupteintragungsort arktischer Spezies über Aerosole oder Vögel); 3.) eine Temperaturerhöhung durch Plexiglasabdeckung in den Cyanomatten auf Rothera und Byers zu einer Veränderung der Cyanodiversität, Toxinproduktion und verstärkt Parasitierung durch Viren und Pilze führt; und 4.) die Infektion mit arktischen Cyanomatten und Temperaturerhöhung bei antarktischen Cyanomatten im Labor nachweislich zu Veränderungen der endemischen Cyanomattendiversität führt. Die Diversitätsanalyse der Cyanomatten erfolgt durch Illumina (16S, ITS, g20 Gene) und Shotgun Sequenzierung. Die Abundanz von Viren und Pilzen wird durch ddPCR bestimmt und der Nachweis der Cyanotoxine erfolgt durch PCR, ELISA und UPLC-MS/MS. Die erhobenen Daten dürften die Eroberung und hiermit profunde voranschreitende Veränderung des antarktischen Cyanomattensystems durch nicht-endemische Spezies nachweisen. Durch die SARS-Cov2 Pandemie konnte die Hypothese, dass Vögel die Vektoren von Cyanomatten-Material sind, nicht getestet werden. Dennoch werden wir Cyanomatten aus unmittelbarer Nähe zu Vogelnistplätzen in Spitzbergen untersuchen. GPS-tracking Daten sollten mögliche Zusammenhänge zwischen Vogelmigration und der Verbreitung nicht-endemischer Cyanos und ihrer Parasiten aufdecken.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Funktionelle Adaption an polare Licht-Bedingungen in marine Mikro-Eukaryoten

Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Funktionelle Adaption an polare Licht-Bedingungen in marine Mikro-Eukaryoten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Tages- und Jahreszeit abhängigen Lichtverhältnisse in den verschiedenen Breitengraden sind eines der stabilsten Umweltsignale und bestimmen zusammen mit den lokalen klimatischen Bedingungen und den biochemischen Wassereigenschaften die spektrale Lichtzusammensetzung und die Lichtintensität im Ozean. Meeresorganismen haben sich an diese lokalen Lichtbedingungen angepasst, was wiederum ihre Fitness erhöht und zum Fortbestand der jeweiligen Art beiträgt. Bei marinen Mikro-Eukaryoten ist eine Vielzahl von Photorezeptoren bekannt, die an diesem Prozess der Anpassung an das vorherrschende Lichtregime beteiligt sind. Es gibt jedoch keine Studien über spezifische Anpassungen von Photorezeptoren in polaren marinen Mikro-Eukaryoten, obwohl das polare Lichtfeld aufgrund seiner extremen Saisonalität, einschließlich langer Perioden der Dunkelheit und langer Perioden mit niedrigem Sonnenstand, eine Besonderheit darstellt. Unser Ziel ist es daher zu verstehen, wie die Photorezeptoren insbesondere von Primärproduzenten im Südlichen Ozean, die die Grundlage für wichtige Ökosystemprozesse bilden, an ihren Anpassungen an die lokalen Lichtverhältnisse beteiligt sind. Das Ziel dieses Projekts trägt zu 3 übergreifenden Themen bei: 1) Reaktionen auf den Klimawandel, 2) Verbindungswege zu den niederen Breiten und 3) Verbessertes Verständnis von polaren Prozessen und Mechanismen. Um das Projektziel zu erreichen, werden wir verschiedene Arten von Untersuchungen durchführen, deren Ergebnisse wissenschaftlich kohärente Informationen liefern werden. Dazu gehört die eine vergleichende Analyse von Blaulicht-Photorezeptoren, die auf neu generierten Sequenzdaten sowie öffentlich verfügbaren Genom-, Transkriptom- und Metatranskriptomdaten basiert. Dieser Ansatz wird es uns ermöglichen, biogeographische Grenzen spezifischer Blaulicht-Photorezeptor-Sequenzen zu identifizieren. Darüber hinaus werden wir die Sequenzinformationen für eine biophysikalische Charakterisierung der Blaulicht-Photorezeptoren auf Proteinebene nutzen. Anhand der intrazellulären Signale, die von Blaulicht-Photorezeptoren ausgelöst werden, und der biophysikalischen Charakterisierung auf Proteinebene werden wir eine Beschreibung ihrer Empfindlichkeit gegenüber der spektralen Zusammensetzung des Blaulichtfeldes erstellen können. Insgesamt werden die Ergebnisse dieses Projekts Aufschluss darüber geben, wie spezifisch die Rezeptoren im Südlichen Ozean in Bezug auf Sequenzevolution, Empfindlichkeit und Absorptionsverhalten sind. Im Hinblick auf die globalen Klimaveränderungen kann uns dies Aufschluss darüber geben, wie spezifische Anpassungen an lokale photische Bedingungen die Verschiebung von Verbreitungsgebieten begrenzen können, da die Temperaturen in den Polarregionen zweifellos steigen, die Sonneneinstrahlung jedoch nicht.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Einfluss des globalen Klimawandels auf die Stöchiometrie und zwischenartlichen Wechselwirkungen in Küstengemeinschaften des antarktischen Planktons

Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Einfluss des globalen Klimawandels auf die Stöchiometrie und zwischenartlichen Wechselwirkungen in Küstengemeinschaften des antarktischen Planktons" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Westantarktische Halbinsel erfährt große Veränderungen der Klimabedingungen, die mit einer abnehmenden Dauer und Ausdehnung des Meereises, Änderungen der Saisonalität, einer zunehmenden Temperaturvariabilität mit zunehmender Meeresoberflächentemperatur (SST) und einer Verringerung der Salinität in Küstengebieten verbunden sind. Dadurch verändern sich auch die klimatischen Bedingungen und die Verfügbarkeit essentieller Nährstoffe wie Eisen, Stickstoff und Phosphor. Das Projekt zielt darauf ab, die interaktiven Auswirkungen mehrerer Umweltstressoren auf antarktische Planktongemeinschaften zu untersuchen. Um die zugrundeliegenden Mechanismen zu verstehen, werden Labor- und On-Board-Experimente in Kombination mit einer Feldstudie durchgeführt, um die Reaktion des Phytoplanktonwachstums, der Biomasseakkumulation und der Partikelstöchiometrie auf faktorielle Manipulationen der Temperatur (Anstieg des Mittelwerts und der Variabilität) und der Nährstoffverhältnisse zu untersuchen. Die Variation dieser Parameter führt zu einer Umweltheterogenität, die die Phytoplanktonpopulationen und damit die Struktur des Nahrungsnetzes stark beeinflusst. Das zweite Ziel ist es daher, die Folgen von Änderungen der Temperatur und der Nährstoffverfügbarkeit auf Produzentenniveau für die Konsumenten in Bezug auf Ressourceneffizienz, Biomasse und Stöchiometrie zu verstehen. Die Originalität des Projekts beruht auf dem Ansatz, die interaktiven Auswirkungen sich ändernder Ressourcen und Umweltparameter auf eine Planktongemeinschaft zu bewerten, die ein hochproduktives Nahrungsnetz in einer Kaltwasserumgebung antreibt und einen starken Einfluss auf die globale Biogeochemie hat. Insgesamt wird das Projekt dazu beitragen, unser mechanistisches Verständnis zu verbessern, wie zukünftige Änderungen der Umweltbedingungen entlang der Westantarktische Halbinsel die Planktongemeinschaften, ihre trophischen Beziehungen und ihre Funktion verändern. Dies ist entscheidend für Vorhersagen, wie das antarktische Nahrungsnetz in Zukunft auf sich ändernde Umweltbedingungen reagieren wird.

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Evaluierung und Verbesserung von konvektionszulassenden Simulationen des Lebenszyklus konvektiver Stürme mit Hilfe polarimetrischer Radardaten

Das Projekt "Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Evaluierung und Verbesserung von konvektionszulassenden Simulationen des Lebenszyklus konvektiver Stürme mit Hilfe polarimetrischer Radardaten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Konvektive Stürme sind verantwortlich für Unwetter, wie z.B. großer Hagel, Sturzfluten und starke Windböen. Ein kritischer Faktor, der bestimmt, wie schädlich diese Ereignisse sind, ist die Wolkenmikrophysik innerhalb des konvektiven Systems. Die Prozesse der Wolkenmikrophysik tragen direkt zur Bildung von großem Hagel und Regen bei, verändern aber zusätzlich die Umgebung, in der sich die Konvektion durch latente Erwärmung und Abkühlung entwickelt. Diese Veränderungen in der Struktur des konvektiven Sturms wirken sich dann auch darauf aus, welche mikrophysikalischen Prozesse wo im Sturm aktiv sind . Über die Existenz dieser komplexen Wechselwirkungen wurde in zahlreichen Publikationen berichtet. Allerdings gibt es bisher keine Studien, die einen systematischen Ansatz zur Erforschung der Wechselwirkungen zwischen Wolkenmikrophysik und konvektiver Dynamik verfolgen. In diesem Projekt werden wir eine systematische Analyse der Wechselwirkungen zwischen den Prozessen der Wolkenmikrophysik, der Struktur konvektiver Systeme und dessen Lebenszyklus sowie der daraus resultierenden Unwetterlage durchführen. Modellsimulationen mit ICON (~1 km Auflösung) werden anhand der mikrophysikalischen Prozesse, der Sturmstruktur und des Lebenszyklus von Dual-Polarisations-Radardaten ausgewertet.Das Hauptziel dieses Projektes ist es, einen Rahmen für die Verbesserung der konvektionszulassenden Simulation von schweren konvektiven Wetterereignissen zu schaffen. Dies wird erreicht durch 1) Analyse der Prozesse der Wolkenmikrophysik, die für die Erzeugung von Niederschlägen, die zu einem Schadensereignis führen, am wichtigsten sind, 2) Evaluierung, wie gut der Lebenszyklus, die Sturmstruktur und die mikrophysikalischen Prozesse von konvektiven Stürmen, die von ICON simuliert werden, den polarimetrischen Radarbeobachtungen entsprechen. 3) Untersuchung der Empfindlichkeit der Sturmstruktur und des Lebenszyklus für die Darstellung mikrophysikalischer Prozesse.Daher wird das ICON-Modell modifiziert, um die mikrophysikalischen Prozessraten in 3D auszugeben. Mikrophysikalisches "Piggybacking" wird ebenfalls integriert, um rein mikrophysikalische Effekte von gekoppelten mikrophysikalisch-dynamischen Effekten zu trennen.Am Ende dieses Projektes werden wir in der Lage sein, die derzeitige Fähigkeit von ICON zusammenzufassen, konvektive Stürme und deren schädliche Niederschläge zu simulieren, zu identifizieren, welche Prozesse für die Erzeugung der schädlichen Niederschläge am wichtigsten sind, und Verbesserungen zu empfehlen, um aktuelle Mängel im Modellsystem zu beheben. Das Endergebnis wird nicht nur ein verbessertes Verständnis der realen und modellierten Konvektion sein, sondern auch spezifische Empfehlungen zur Verbesserung der Vorhersage von schädliche Niederschläge aus Konvektion geben.

Grundlagen des Klimawandels

Seit der Industrialisierung steigt die durchschnittliche globale Lufttemperatur in Bodennähe. Wissenschaftliche Forschungen belegen, dass wir Menschen für den raschen Temperaturanstieg der letzten 100 Jahre verantwortlich sind. Deshalb sprechen wir von einer anthropogenen – vom Menschen verursachten – Klimaänderung. Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle, Erdöl und Erdgas) und durch großflächige Entwaldung wird Kohlendioxid (CO 2 ) in der ⁠ Atmosphäre ⁠ angereichert. Land- und Viehwirtschaft verursachen Emissionen von Gasen wie Methan (CH 4 ) und Distickstoffmonoxid (Lachgas, N 2 O). Kohlendioxid, Methan und Lachgas gehören zu den treibhauswirksamen Gasen. Eine Ansammlung dieser Gase in der Atmosphäre führt in der Tendenz zu einer Erwärmung der unteren Luftschichten. Informationen zu den Ursachen von Klimaänderungen, zur Zunahme von Treibhausgasen in der Atmosphäre und zum ⁠ Treibhauseffekt ⁠ (natürlich und ⁠ anthropogen ⁠) finden Sie auf der Seite Klima und Treibhauseffekt . Wir stellen auf der Seite Weltklimarat den Zwischenstaatlichen Ausschuss für Klimaänderungen – ⁠ IPCC ⁠ (Intergovernmental Panel on Climate Change) kurz vor. Zudem gibt es eine Übersicht zu den Erkenntnissen der letzten IPCC-Sachstandsberichte. Diese Berichte widmen sich den wissenschaftlichen Grundlagen der anthropogenen (durch den Menschen verursachten) ⁠ Klimaänderung ⁠, den beobachteten Klimaänderungen und -folgen, den Projektionen künftiger Klimaänderungen, den Maßnahmen zur Minderung der Emissionen treibhauswirksamer Gase sowie den Maßnahmen zur Anpassung an projizierte (für die Zukunft berechnete) Klimaänderungen. Seit dem vergangenen Jahrhundert erwärmt sich das Klima, wie wir aus Beobachtungs- und Messdaten wissen. Das globale Mittel der bodennahen Lufttemperatur stieg deutlich an, Gebirgsgletscher und Schneebedeckung haben im Mittel weltweit abgenommen und Extremereignisse wie Starkniederschläge und Hitzewellen werden häufiger. Mehr zu beobachteten Klimaänderungen erfahren Sie auf der Seite Beobachteter Klimawandel . Die Ausmaße und Auswirkungen der zukünftigen Klimaänderungen können nur durch Modellrechnungen nachgebildet werden, da vielfältige und komplexe Wechselwirkungen berücksichtigt werden müssen. Durch die Modellierung verschiedener denkbarer Szenarien lassen sich mögliche zu erwartende Klimaänderungen für das 21. Jahrhunderts ableiten. Auf der Seite Zu erwartende Klimaänderungen bis 2100 können Sie sich über mögliche Entwicklungen informieren. Die Themen Klimawandel und Klimaänderung sind sehr komplex und uns erreichen daher regelmäßig Fragen zu grundsätzlichen Hintergründen des Klimawandels. Auf der Seite Häufige Fragen zum Klimawandel haben wir unsere Antworten auf häufig gestellt Fragen (FAQs) für Sie zusammengestellt. Obwohl ein breiter wissenschaftlicher Konsens über die anthropogene Klimaänderung besteht, werden in der öffentlichen Diskussion immer wieder Zweifel gestreut. Über Bücher, Zeitschriften, Fernsehsendungen, das Internet und die sozialen Medien werden Informationen verbreitet, die veraltet, unvollständig, aus dem Zusammenhang gegriffen und/oder falsch sind. Auf der Seite Klimawandel-Skeptiker setzen wir uns zunächste grundsätzlich mit Klimawandel-Skepsis auseinander und nehmen auf der Unterseite Antworten des UBA auf populäre skeptische Argumente skeptische Thesen genauer unter die Lupe. Die meisten Menschen denken an eine allmähliche Erwärmung des Klimas, wenn sie den Begriff „anthropogene Klimaänderung” hören. Es ist jedoch auch möglich, dass besonders starke oder sogar abrupte Klimaänderungen einsetzen. Derartige Prozesse sind mit kritischen Schwellen im ⁠ Klimasystem ⁠, sogenannten Kipp-Punkten, verbunden. Bereits geringe Änderungen im Klimasystem können bewirken, dass Kipp-Punkte erreicht werden, in deren Folge sich das Klima stark ändert. In unserem Hintergrundpapier Kipp-Punkte im Klimasystem erhalten Sie dazu ausführliche Informationen.

Evidenzbasierte Anbauempfehlungen im Klimawandel

Das Projekt "Evidenzbasierte Anbauempfehlungen im Klimawandel" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Bayerische Landesanstalt für Wald und Forstwirtschaft.

1 2 3