API src

Found 717 results.

Digitalisierte Wärmespeicher für die Energiewende

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Modelluntersuchungen zu Rotations-Schwingungs-Anregungen von Hydroxyl-Molekülen in der Mesosphäre und Rotationstemperaturen

Eine der Standardmethoden zur Temperaturbestimmung in der Mesopausen-Region basiert auf spektroskopischen Messungen der Rotationstemperaturen von Hydroxyl-Molekülen. Eine wichtige Frage bei der Interpretation der gemessenen Rotationstemperaturen ist die Frage nach der Thermalisierung der Rotationszustände. Bisher gibt es jedoch nur wenige Untersuchungen zu diesem Thema.Das Ziel dieses Projektes ist, Hydroxyl-Moleküle in verschiedenen Rotations-Schwingungs-Zuständen in der oberen Mesosphäre und unteren Thermosphäre zu untersuchen. Zu diesem Zweck soll ein kinetisches Modell der Schwingungs- und Rotations-Anregungen von OH entwickelt werden. Das Modell soll verwendet werden, um die Konzentrationen von angeregten Hydroxyl-Molekülen und Emissionsraten in verschiedenen Höhen und für verschiedene atmosphärische Bedingungen zu simulieren. Insbesondere sollen die Besetzungen der Rotationszustände analysiert werden, um Abweichung vom lokalen thermodynamischen Gleichgewicht bewerten zu können. Die Modellergebnisse sollen mit bodengestüzten Messungen und Satelliten-Messungen verglichen werden.

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Charakterisierung von orographisch beeinflusster Bereifung und sekundärer Eisproduktion und deren Auswirkungen auf Niederschlagsraten mittels Radarpolarimetrie und Dopplerspektren (CORSIPP)

Niederschlag ist eine wichtige Komponente des hydrologischen Kreislaufs. Um zu verstehen, wie sich der Wasserhaushalt in einem sich erwärmenden Klima verändert, ist ein umfassendes Verständnis der Niederschlagsbildungsprozesse erforderlich. In den mittleren Breiten wird der meiste Niederschlag unter Beteiligung der Eisphase in Mischphasenwolken erzeugt, aber die genauen Interaktionen zwischen Eis, flüssigem Wasser, Wolkendynamik, orografischem Antrieb und Aerosolpartikeln während der Eis-, Schnee- und Regenbildung sind nicht gut verstanden. Dies gilt insbesondere für Bereifungs- und Sekundäre Eisproduktion (SIP) Prozesse, die mit den größten quantitative Unsicherheiten in Bezug auf die Schneefallbildung verbunden sind. Die Lücken in unserem Verständnis von SIP- und Bereifungsprozesse zu schließen, ist vor allem für Gebirgsregionen entscheidend, die besonders anfällig für Änderungen des Niederschlags und des Wasserhaushalts, wie z.B. des Verhältnisses zwischen Regen und Schneefall, sind. In diesem Antrag wird ein Forschungsprojekt vorgeschlagen, das sich dem Verständnis von Bereifungs- und SIP-Prozessen in komplexem Terrain widmet. Dazu werden wir ein innovatives, simultan sendendes und simultan empfangendes (STSR), scannendes W-Band-Wolkenradar zusammen mit einer neuartigen In-situ-Schneefallkamera eine ganze Wintersaison lang in den Rocky Mountains von Colorado, USA betreiben. Die Instrumente werden Teil der Atmospheric Radiation Measurement (ARM) Surface Atmosphere Integrated Field Laboratory (SAIL) Kampagne sein, bei der ein Ka-Band und ein X-Band Radar eingesetzt werden. Durch die Kombination von spektralen polarimetrischen und Multifrequenz-Doppler-Radarbeobachtungen mit empirischen und Bayes'schen Machine Learning Verfahren werden wir Bereifungs- und SIP-Ereignisse identifizieren und deren Einfluss auf die Schneefallrate quantifizieren. Dies erfordert die Erweiterung des Passive and Active Microwave radiative TRAnsfer Modells (PAMTRA) mit zusätzlichen polarimetrischen Variablen und modernsten Berechnungen von Streueigenschaften. Durch die Nutzung der umfangreichen kollokierten Messungen während SAIL wird es ermöglicht, die beobachteten Prozessraten mit Umweltbedingungen wie Temperatur, Luftfeuchtigkeit und Flüssigwasserpfad sowie mit der Wolkendynamik in Beziehung zu setzen. Darüber hinaus werden wir einen besonderen Fokus auf den Einfluss von vertikalen Luftbewegungen legen, die unter orographischen Bedingungen häufig auftreten. Zusammengenommen wird das vorgeschlagene Projekt unser Verständnis von Bereifungs- und SIP-Prozessen in komplexem Gelände verbessern.

Fernerkundung der bodennahen Atmosphaere und der Erdoberflaeche

Mit Methoden der Fernerkundung sollen physikalische Parameter erfasst werden, die in umweltrelevante Untersuchungen der bodennahen Atmosphaere und der Erdoberflaeche Eingang finden. Fuer flaechendeckende Untersuchungen sind Analysen von Satellitenszenen (z.B. von METEOSAT und NOAA) vorgesehen, wobei die Bestimmung von Oberflaechentemperaturen im Vordergrund steht. Mit Hilfe der dazu notwendigen Strahlungstransportmodelle soll ebenfalls versucht werden, Stoffkonzentrationen in der Atmosphaere zu erfassen. Bei den erdgebundenen Methoden liefert das DOAS (Differential Optical Absorption Spectroscopy) Stoffkonzentrationen in der Atmosphaere, die ueber eine Weglaenge von einigen Kilometern integriert sind. Fuer die Bestimmung der fuer den Schadstofftransport wichtigen Windgeschwindigkeiten werden sowohl akustische (Sound Detection and Ranging, SODAR) als auch optische Methoden (Szintillationsanemometrie) eingesetzt.

Fernerkundung der bodennahen Atmosphaere und der Erdoberflaeche

Mit Methoden der Fernerkundung sollen physikalische Parameter erfasst werden, die in umweltrelevante Untersuchungen der bodennahen Atmosphaere und der Erdoberflaeche Eingang finden.Fuer flaechendeckende Untersuchungen sind Analysen von Satellitenszenen (z.B. von METEOSAT und NOAA) vorgesehen, wobei die Bestimmung von Oberflaechentemperaturen im Vordergrund steht. Mit Hilfe der dazu notwendigen Strahlungstransportmodelle soll ebenfalls versucht werden, Stoffkonzentrationen in der Atmosphaere zu erfassen. Bei den eingebundenen Methoden liefert das DOAS (Differential Optical Absorption Spectroscopy) Stoffkonzentrationen in der Atmosphaere, die ueber eine Weglaenge von einigen Kilometern integriert sind. Fuer die Bestimmung der fuer den Schadstofftransport wichtigen Windgeschwindigkeiten werden sowohl akustische (Sound Direction und Ranging, SODAR) als auch optische Methoden (Szintillationsanemometrie) eingesetzt.

Aktuelle Studienergebnisse zu Geruchsprüfungen bei Bauprodukten

<p>Aus Bauprodukten können flüchtige organische Substanzen (VOC) ausgasen. Diese können, ebenso wie dadurch verursachte Gerüche, dem Wohlbefinden der Raumnutzenden schaden. Unangenehme Gerüche können auch zu vermehrtem Lüften und somit zu höherem Energieverbrauch führen. Der Blaue Engel zeichnet emissions- und geruchsarme Produkte aus. Zu Bodenbelägen gibt es diesbezüglich neue Forschungsergebnisse.</p><p>Gerüche in Innenräumen können belästigend wirken und das Wohlbefinden sowie die Gesundheit beeinflussen. Hauptziel der Untersuchungen im jetzt abgeschlossenen Forschungsvorhaben war es zu prüfen, ob die Vergabekriterien des Umweltzeichens Blauer Engel für die Produktgruppen „Elastische Bodenbeläge“ (DE-UZ 120) und „Emissionsarme Bodenbeläge, Paneele und Türen aus Holz und Holzwerkstoffen für Innenräume“ (DE-UZ 176) um geruchsrelevante Aspekte ergänzt werden können. Die Ergebnisse der Untersuchungen zeigen, dass es möglich ist, Anforderungen an den Geruch der Produkte zu stellen.</p><p>Ferner wurde untersucht und gezeigt, dass die bislang vorläufig festgelegte Schwelle einer empfundenen Intensität von 7 pi für die Zulassung von Bauprodukten gemäß Schema des Ausschusses zur gesundheitlichen Bewertung von Bauprodukten (AgBB) und beim Blauen Engel grundsätzlich als Bewertungsmaßstab geeignet ist.</p><p>Die Einhaltung konstanter Bedingungen für die Temperatur und die relative Feuchte bei den Messungen sind von großer Bedeutung, da diese Einfluss auf die Messergebnisse haben. Es wurden Untersuchungen bei unterschiedlichen Temperaturen und abweichender relativer Luftfeuchte, die mit einer eigens dafür gebauten kleinen raumlufttechnischen Anlage eingestellt werden konnten, durchgeführt. Die <a href="https://www.umweltbundesamt.de/publikationen/geruchs-emissionsarme-produkte-fuer-eine-gesunde">Ergebnisse</a> belegen, dass die Einhaltung konstanter Prüfbedingungen wichtig ist und zeigen deren Einfluss auf die Geruchswahrnehmung.</p><p>Im Vorhaben wurde gezeigt, dass holzbasierte Produkte teilweise trotz hoher Geruchsintensität eine neutrale bis positive Hedonik (Wahrnehmung/Bewertung) zeigen, was für Bauprodukte untypisch ist. Die Zusammenhänge zwischen Intensität, Hedonik und Zumutbarkeit werden in den nächsten drei Jahren in einem Folgeprojekt weiter untersucht.</p>

Dezentrales IoT-System zur Steuerung von Aktorik durch Sensorik im Agrarsektor

Zielsetzung: Das Vorhaben hat das Ziel, ein innovatives, dezentrales IoT-System zu entwickeln, das die Bewässerung und Agrarprozesse im Weinbau sowie in anderen landwirtschaftlichen Betrieben revolutionieren soll. Mithilfe hochmoderner Sensorik und Künstlicher Intelligenz (KI) soll der Trockenstress von Pflanzen in Echtzeit überwacht werden , um datenbasierte, intelligente Bewässerungsentscheidungen zu treffen. Dadurch soll der Wasserverbrauch signifikant reduziert werden - Schätzungen zufolge um bis zu 30 %, was Millionen von Litern Wasser jährlich entspricht. Dies trägt nicht nur zur Schonung wertvoller Süßwasserressourcen bei, sondern schützt auch die Grundwasserqualität und unterstützt die nachhaltige Nutzung von Ressourcen. Der Anlass für das Projekt liegt in den zunehmenden Herausforderungen, vor denen die Landwirtschaft angesichts des Klimawandels steht. Längere Trockenperioden, steigende Temperaturen und die globale Wasserknappheit setzen traditionelle Bewässerungsmethoden unter Druck, die oft ineffizient und verschwenderisch sind. Laut dem Weltwasserbericht der Vereinten Nationen von 2021 werden etwa 69 % des weltweit verfügbaren Süßwassers in der Landwirtschaft genutzt, wobei ineffiziente Praktiken wie Großflächenberegnung erhebliche Verluste verursachen. Besonders in Weinbauregionen führt die übermäßige Nutzung von Wasser zu ökologischen und wirtschaftlichen Problemen. Das Vorhaben möchte diese Problematik adressieren, indem es innovative Technologien einsetzt, die den Wasserverbrauch optimieren und die landwirtschaftliche Produktivität erhöhen. Darüber hinaus verfolgt das Projekt einen umfassenden Ansatz: Neben der Entwicklung und Erprobung von Sensorik und Hardware wird eine KI-basierte Bewässerungssteuerung entwickelt , die in realen landwirtschaftlichen Betrieben getestet wird. Das IoT-System ermöglicht eine präzise und ressourcenschonende Bewässerung in der Landwirtschaft. Dazu werden Sensoren zur Messung von Bodenfeuchtigkeit, Temperatur, Luftfeuchtigkeit und Pflanzenzustand in einer Pilotanlage installiert. Die erfassten Daten werden über eine drahtlose Infrastruktur in eine Cloud übertragen, wo sie verarbeitet und analysiert werden. Eine KI wertet die Daten aus, erkennt Zusammenhänge zwischen den Messwerten und dem Trockenstress der Pflanzen und steuert die Bewässerung automatisch.

Untersuchungen an einer Erdreich-Waermepumpe fuer den Heizungsbetrieb

Die Anlage besteht aus einer Sole/Wasser-Waermepumpe WPSI17 der Firma Siemens und einem 265 m2 grossen Erdreich-Waermetauscher. Angeschlossen ist ein Messwerterfassungssystem mit zur Zeit 42 Temperaturmessstellen zur Kurzzeitmessung (einige Stunden) sowie zur Langzeitmessung bis zu einem Jahr. Nach der Neukalibrierung der diversen Erdtemperaturfuehler werden Untersuchungen des thermischen Verhaltens des Erdreichs vorgenommen. Zur Zeit ist die Anlage wegen benachbarten Umbauarbeiten ausser Betrieb.

Digitalisierte Wärmespeicher für die Energiewende, Teilvorhaben: Optimierung Sensorhaut zur großflächigen Temperaturerfassung an Wärmespeichern

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Digitalisierte Wärmespeicher für die Energiewende, Teilvorhaben: Integration einer Sensorhaut zur Effizienzsteigerung von Wärmespeichern

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2-Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

1 2 3 4 570 71 72