API src

Found 24 results.

EXIST-Forschungstransfer: otego

Das Projekt "EXIST-Forschungstransfer: otego" wird vom Umweltbundesamt gefördert und von otego GmbH durchgeführt. otego entwickelt neuartige organische thermoelektrische Generatoren (OTEGs) als nachhaltige Energieversorgung für das Internet of Things. Für viele vernetze Kleingeräte werden lästige Batteriewechsel bald der Vergangenheit angehören. Denn Wärme gibt es fast überall. Mit OTEGs lässt sich die Energie selbst kleinster Wärmequellen vollkommen wartungsfrei in nützlichen Strom umwandeln - und zwar dort, wo er gebraucht wird. Elektrische Verbraucher erhalten so eine unabhängige Energiequelle. OTEGs von otego besitzen im Vergleich zur Konkurrenz einzigartige Eigenschaften, denn otego setzt erstmals elektrisch leitfähige Kunststoffe aus eigener Entwicklung ein. Die OTEGs sind unter anderem mechanisch flexibel und können einfach an gekrümmte Oberflächen wie Rohre angepasst werden. Die größte Besonderheit der otego-Technologie liegt jedoch in der Kombination aus kostengünstigen Materialien und großindustriellen Produktionsverfahren. Die elektrischen Schaltungen werden auf industriellen Druckmaschinen gedruckt und anschließend vollautomatisch in einem patentierten Verfahren weiterverarbeitet. Dadurch wird otego als erster Hersteller OTEGs produzieren können, die für breite Massenanwendungen in Frage kommen. Nachdem in der ersten Förderphase der Proof of Concept erbracht wird, sollen in der zweiten Förderphase der Markteintritt erfolgen. Dazu wird der thermoelektrische Wirkungsgrad auf ein Massenmarktfähiges Niveau erhöht. Außerdem werden die prototypischen Produktionsmaschinen in einen Zustand gebracht, mit dem sich eine Pilotserie fertigen lässt. Mit Kunden werden zudem in Kooperationsprojekten thermoelektrische Anwendungen entwickelt.

Teilvorhaben: Entwicklung und Bau eines TEG-Demonstrators

Das Projekt "Teilvorhaben: Entwicklung und Bau eines TEG-Demonstrators" wird vom Umweltbundesamt gefördert und von Gentherm Europe GmbH durchgeführt. 1. Vorhabenziel Ziel des FuE-Verbundvorhabens ist es, ein kompaktes, robustes und wirtschaftliches Großmodul zur dezentralen Erzeugung von Strom aus Abwärme mit Hilfe von thermoelektrischen Generatoren (TEG) zu entwickeln und industriell zu etablieren. Mit dem Forschungsvorhaben sollen die notwendigen Untersuchungen zur Entwicklung und zum Einsatz von thermoelektrischen Großmodulen im industriellen Umfeld erarbeitet werden. Es wird die Steigerung des Anlagenwirkungsgrades durch die verbesserte energetische Ausnutzung vorhandener Abwärmeströme und damit ein Beitrag zur Senkung des CO2-Ausstoßes angestrebt. 2. Arbeitsplanung Zuerst erfolgt die Analyse der betrieblichen Randbedingungen der Abwärmeströme bei der Salzgitter Flachstahl GmbH, gefolgt von Laborversuchen, der Konzeptentwicklung für elektrische Verschaltungen und dem Aufbau eines Großmoduls. Daran schließt sich die Entwicklung eines technischen Konzepts für eine Demonstrationsanlage und ihre betriebliche Erprobung an.

Teilvorhaben: Simulation, Laborversuche und Analysen zum Aufbau eines TEG-Großmoduls

Das Projekt "Teilvorhaben: Simulation, Laborversuche und Analysen zum Aufbau eines TEG-Großmoduls" wird vom Umweltbundesamt gefördert und von VDEh-Betriebsforschungsinstitut GmbH durchgeführt. Ziele dieses Forschungsvorhabens sind die Steigerung des Anlagenwirkungsgrades durch die verbesserte energetische Ausnutzung vorhandener Abwärmeströme im Hochtemperaturbereich, die erstmalige betriebliche Anwendung von thermoelektrischen Großmodulen und die daraus abgeleitete Anwendungsoptimierung für die Industrie. Mit kompakten und robusten Großmodulen zur dezentralen Erzeugung von Strom aus Abwärme wird die Effizienz der eingesetzten Primärenergie in den stahlverarbeitenden Unternehmen verbessert. Aufbauend auf der Erfassung des IST-Zustandes vorhandener Abwärmeströme im Werk wird ein TEG-Großmodul entwickelt und als Demonstrator gebaut. In ersten Laborversuchen mit unterstützenden Simulationsberechnungen wird der Grundbaustein für die endgültige Auslegung des TEG-Großmoduls gelegt. In den anschließenden Technikumversuchen wird das Großmodul unter betriebsnahen Bedingungen erprobt und weiterentwickelt. Es folgt die Langzeiterprobung an einer großtechnischen Anlage im Werk. Das Großmodul wird fortlaufend optimiert auf Basis des aktuellen Entwicklungsstandes. Nutzanwendungskonzepte überführt und für ökonomisch-technische Bewertungen genutzt. usw.

Teilvorhaben: Betriebliche Erprobung einer Demonstrationsanlage

Das Projekt "Teilvorhaben: Betriebliche Erprobung einer Demonstrationsanlage" wird vom Umweltbundesamt gefördert und von Salzgitter Mannesmann Forschung GmbH durchgeführt. Ziel dieses Forschungsvorhabens sind Steigerung des Anlagenwirkungsgrades durch die verbesserte energetische Ausnutzung vorhandener Abwärmeströme, die erstmalige betriebliche Anwendung von thermoelektrischen Großmodulen und die daraus abgeleitete Anwendungsoptimierung für die Industrie. Mit kompakten, robusten und wirtschaftlichen Großmodulen zur dezentralen Erzeugung von Strom aus Abwärme mit Hilfe von thermoelektrischen Generatoren (TEG) wird die Effizienz der eingesetzten Primärenergie in stahlverarbeitenden Unternehmen verbessert. Aufbauend auf einer Beschreibung des IST-Zustandes wird in Laborversuchen die grundsätzliche Eignung und Anwendung von Thermogeneratoren im industriellen Umfeld erprobt und definiert. Die Konzipierung von Großmodulen wird durch simulative Arbeiten begleitet und daraus abgeleitet wird eine Demonstrationsanlage beim Industriepartner errichtet. Diese Großmodule werden im industriellen Einsatz dauerhaft optimiert und die daraus gewonnenen Erkenntnisse werden in weitere Nutzanwendungskonzepte überführt.

Entwicklung innovativer mini(micro) KWK-Technologien auf Biomasse-Basis

Das Projekt "Entwicklung innovativer mini(micro) KWK-Technologien auf Biomasse-Basis" wird vom Umweltbundesamt gefördert und von Kompetenzzentrum für Nachwachsende Rohstoffe, Technologie- und Förderzentrum durchgeführt. Ziel des Vorhabens ist die Entwicklung, Prüfung und Optimierung neuer KWK-Technologien, die in Verbindung mit kleinen Biomasse-Feuerungen den Leistungsbereich von kleiner als 1 kW bis ca. 100 kW abdecken, da es in diesem Leistungssegment bis heute keine zuverlässige und wirtschaftlich betreibbare Technik angeboten wird. Es werden daher 3 verschiedene KWK-Konzepte untersucht: Ein thermoelektrischer Generator in Verbindung mit einem Pelletofen (25-50 W); Eine Mikro-ORC-Anlage in Verbindung mit einem Hackschnitzel- oder Pelletkessel (ca. 1 kW) sowie eine extern beheizte Gasturbine in Verbindung mit einem innovativen Hochtemperaturwärmetauscher (5-100 kW). Die Arbeiten werden in 6 technisch / wissenschaftlichen Arbeitspaketen (AP)sowie je einem Arbeitspaket für die Koordination / Administration und die Ergebnisverwertung durchgeführt: AP 1: Definition der Rahmenbedingungen; AP 2: Grundlegende Untersuchungen zu ascheabhängigen Problemen bei Hochtemperaturwärmetauschern; AP 3:Entwicklung und Prüfung der TEG-Technologie; AP 4: Entwicklung der Mikro-ORC-Technologie; AP 5: Entwicklung eines Hochtemperaturwärmetauschers für Gasturbinen-Anwendungen; AP 6: Techno-Ökonomische Analyse der neuen Mikro-KWK-Technologien für Biomasse; AP 7: Ergebnisverwertung; AP 8: Projektmanagement und -koordination.

Teilvorhaben 2

Das Projekt "Teilvorhaben 2" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Institutsteil Dresden durchgeführt. Im Allgemeinen gehen ca. 65% der Primärenergie als Abwärme verloren. Durch Abwärmenutzung mittels Thermogeneratoren (TEG) aus nicht-toxischen Mg- und Mn-Siliziden ist eine Reduzierung der CO2-Emissionen und Steigerung der Energieeffizienz möglich. O-Flexx ersetzt den konventionellen TEG-Ansatz durch einen Dünnschicht-TEG: eine Silizidscheibe wird auf einer Metallfolie (Dicke 0,5 und 0,12 mm) aufgebaut und zu 5x5x0,5 mm3 vereinzelt mit einem Spalt (0,4 mm) auf der Metallseite. Der TE-Chip wird auf einen wärmeleitenden Träger aufgesetzt und an den heißen bzw. kalten-Flächen angebunden. Diese Technologie ist für die Herstellung von Bi2Te3-TE-Chips bei O-Flexx vorhanden und wird für Silizid-Chips erweitert. Die Vorteile gegenüber konventionellen TEG sind: bis 10-fache Masse- und Materialeinsparung, anpassbarer thermischer Widerstand, Steigerung des verfügbaren deltaT und automatisierte Fertigung in einer verfügbaren Produktionslinie. AP1 Erstellung Lastenheft AP2 Festlegung Kontaktmaterials für die Vorkontaktierung AP3 SPS-Kontaktierung und Entwicklung eines Lotprozesses AP4 Herstellung von TE-Chips im Labor-Maßstab AP5 Up-Scaling der Herstellung dünner TE-Scheiben und deren Kontaktierung AP6 Up-ScalingScaling der Herstellung TE-Chips AP7 Oxidationsschutz der TE-Materialien AP10 Charakterisierung der 'Power Cell'.

Teilvorhaben: Systemische optimierte Abgasanlage

Das Projekt "Teilvorhaben: Systemische optimierte Abgasanlage" wird vom Umweltbundesamt gefördert und von Friedrich Boysen GmbH & Co. KG durchgeführt. Ziel dieses Vorhabens ist es, eine auf das zu entwickelnde Thermomodul abgestimmte strömungs- und ladungswechseloptimierte Abgasanlage für einen Range-Extender-Motor auszulegen und aufzubauen. Dazu sind in einem ersten Schritt Messungen an einem geeigneten Motor zur Ermittlung der Randbedingungen für die Auslegung durchzuführen. Anschließend wird in mehreren Iterationsschleifen von Konstruktion und Strömungsberechnung eine Abgasanlage konzipiert, die die besonderen Erfordernisse des Thermomoduls (homogene Anströmung bei möglichst hoher Temperatur) mit den generellen Anforderungen an eine Abgasanlage (geringer Gegendruck, Schalldämpfung) miteinander verbindet. Letztlich soll eine solche Abgasanlage mit integrierten Thermomodul aufgebaut, mit Messstellen versehen und den Tests zugeführt werden.

Teilvorhaben: Integration der thermischen Speicherung und thermoelektrischen Wandlung

Das Projekt "Teilvorhaben: Integration der thermischen Speicherung und thermoelektrischen Wandlung" wird vom Umweltbundesamt gefördert und von ElringKlinger AG durchgeführt. Das vorliegende Teilvorhaben der ElringKlinger AG behandelt die konstruktive Umsetzung eines thermischen Speichers und thermoelektrischen Generators in einem vorhabenrelevanten Thermomodul. Die Arbeitsinhalte haben zum Ziel, die simulativ erarbeiteten Ergebnisse an einem Demonstrator evaluierbar darzustellen. Das Teilvorhaben stellt damit die Grundlage in Form von Hardware für die nachfolgende abschließende Projektphase und den Konzeptnachweis. Eine besondere technische Herausforderung stellt sich in dem hohen Grad an notwendiger Funktionsintegration, der notwendig ist zur Integration der Komponenten thermischer Speicher und thermoelektrischer Generator in das thermische Abschirmsystem. Auf der Basis von bereit gestelltem Bauraum und Umgebungsmodellen erfolgt zunächst die Modellierung und Konstruktion des gesamten Verbunds an Abschirmkomponenten. In diesem Teilschritt werden unter anderem thermische und mechanische Randbedingungen ermittelt, geometrische Bauteilstrukturen optimiert sowie eine optimale Ausnutzung verfügbarer Bauräume für die Energierückgewinnung sicher gestellt. Die Komponenten werden als funktionelle Zwischenlagen im Abschirmsystem gemäß den zuvor abgeleiteten Anforderungen ausgelegt und prototypenhaft in einem Demonstrator dargestellt. Die Zielsetzung des Teilvorhabens von ElringKlinger gestaltet sich analog zu den in der Gesamtvorhabenbeschreibung festgelegten Vorgaben. Im Teilbereich des thermoelektrischen Generators wird somit eine Wandlung mit einem 30Prozent höheren Wirkungsgrad gegenüber dem Stand der Technik angestrebt. Der thermische Speicher wird gemäß festgehaltener Ziele in einem Temperaturbereich größer 300 C umgesetzt.

Teilvorhaben: Integration von TEG-Materialien und thermoelektrische Wandlung

Das Projekt "Teilvorhaben: Integration von TEG-Materialien und thermoelektrische Wandlung" wird vom Umweltbundesamt gefördert und von GreenIng GmbH & Co. KG durchgeführt. Motivation: Die Elektrifizierung von Hybridfahrzeugen bietet die Möglichkeit elektrische Energie einfach zu speichern und zu verwerten. Dadurch können Technologien zur Gesamtwirkungsgradsteigerung zum Einsatz kommen, die bisher unrentabel waren. Die Elektrifizierung bedingt jedoch auch eine Verknappung der Abwärme der Komponenten im Antriebstrang. Somit sind Systeme zur Speicherung von Wärme und zur wirkungsgradoptimalen Bereitstellung von Kühlleistung ein wichtiger Beitrag zur Kundenakzeptanz der Elektromobilität. Ziele: Ziel ist die Erschließung von Effizienzsteigerungspotentialen im kundenrelevanten Realbetrieb eines Range-Extender-Antriebssystems mit Hilfe systemischer Integration von - Thermischer Wandlung in funktionsintegrierten Hitzeschutzbauteilen, - thermischer Speicherung im Temperaturbereich größer als 300 C und - bauraumoptimierter 'heat to cool'-Technologie. Lösungsweg: Der Gesamtwirkungsgrad eines seriellen Range Extender Hybridfahrzeugs wird damit gesteigert, dass die Abwärme des Range Extender Verbrennungsmotors variabel gewandelt oder gespeichert wird. Für die Nutzung kommen je nach Betriebspunkt die o.g. Technologien zum Einsatz. In der Projektdurchführung werden Simulation-, Konstruktion- und Versuchsumfänge bearbeitet. Simulativ wird ein Antriebsstrangmodell in einer virtuellen Gesamtfahrzeugumgebung aufgebaut, das um ein Thermomodul ergänzt ist, welches Restwärme mit verschiedenen Technologien nutzt. Auf Basis von Simulationsrechnungen werden belastbare Aussagen über den Einfluss von Restwärmenutzung auf den Gesamtsystemwirkungsgrad in jeweiliger Abhängigkeit von den Betriebsbedingungen erarbeitet. Das Thermomodul wird dabei aus funktionalen Submodulen zur thermoelektrischen Wandlung, zur Speicherung thermischer Energie und zur Einbindung von 'heat to cool'-Technologie zusammengesetzt sein. Im Lauf des Projekts wird aus der Simulation eine Betriebsstrategie für das Gesamtsystem entwickelt, die die Abwärme jederzeit so nutzt, dass der Fahrzeugwirkungsgrad maximiert wird. Konstruktiv werden zunächst Untersuchungen zu anwendungsoptimierten Werkstoffsystemen bezüglich der Kernfunktionalitäten des Thermomoduls, thermisches Speichern und der Adsorptionskälte-Erzeugung, durchgeführt. Abhängig von den Ergebnissen der vorgeschalteten Arbeitspakete werden die Komponenten konzipiert und die Bauräume optimiert. Das thermische Speichersystem und der thermo-elektrische Wandler werden durch umfangreiche CAE-gestützte Darstellungen, insbesondere bezüglich der mechanischen Stabilität und Gesamtsystemeffizienz, in ein thermisches Abschirmsystem integriert. Die konsolidierte Kombination des Thermomoduls wird prototypenhaft im Rahmen eines angepassten Abgassystems eines Range Extenders erarbeitet. Die Validierung des Konzeptträgers wird mit dem Ziel des Konzeptnachweises an einem geeigneten Prüfstand erprobt. Darüber hinaus ermöglichen umfangreiche Erprobungen die Verifizierung und Validierung aller Simulationsmodelle. usw.

Teilvorhaben: Thermodynamische Simulation des Thermomoduls mit Integration in das Fahrzeug

Das Projekt "Teilvorhaben: Thermodynamische Simulation des Thermomoduls mit Integration in das Fahrzeug" wird vom Umweltbundesamt gefördert und von TheSys GmbH durchgeführt. Ziel ist die simulationsbasierte Erstellung und Auslegung eines Thermomoduls (bestehend aus Hochtemperaturspeicher, Adsorptionskälteanlage und Thermoelektrischem Generator) für ein Hybridfahrzeug mit Range-Extender unter Berücksichtigung der relevanten Interaktionen mit der Fahrzeugumgebung. Als Ergebnis des Teilvorhabens liegen vor: 1) die Basisauslegung der Komponenten als Voraussetzung für den Aufbau von Prototypen und 2) die Systemarchitektur mit Regelungsstrategien als Voraussetzung für den Aufbau des Thermomoduls auf dem Prüfstand. Als erster Schritt werden thermodynamische Simulationsmodelle erstellt für die zu untersuchenden neuen Technologien 'Hochtemperaturspeicher', 'Adsorptionskälteanlage' und 'Thermoelektrischer Generator' und deren Integration in ein Thermomodul. Parallel werden Simulationsmodelle erstellt zur Abbildung des hybridisierten Antriebsstranges (Verbrennungsmotor und E-Antrieb), des Fahrzeugkühlsystems und der Klimaanlage. Durch Vernetzung aller Simulationsbausteine werden ein Fahrzeug-Gesamtmodell aufgebaut und umfangreiche Auslegungsrechnungen durchgeführt zur Ermittlung:1) der geeigneten Systemarchitekturen (Verschaltung der Komponenten untereinander), 2) der optimalen Dimensionierung der Komponenten und 3) der vorteilhaften Betriebs- und Regelungsstrategie des Thermomoduls. Als Simulationstools werden die Softwarepakete Dymola und GT-Suite eingesetzt, mit denen die Simulation von stationären und transienten Fahrprofilen möglich ist.

1 2 3