API src

Found 95 results.

Related terms

Freiwillige Vereinbarung Schutz der Brandgansmauser mit der Hobbyfischerei 2021

Freiwillige Vereinbarung zum Schutz der mausernden Brandgänse Auszug aus der Vereinbarung zwischen Fischern / Hobbyfischern und dem Nationalparkamt: "In der Zeit vom 1. Juli bis 31. August jeden Jahres werden wegen der dort mausernden Brandenten folgende Prielströme und angrenzende Watten nicht befischt und befahren: - das Bielshövener Loch, der Flackstrom, der Dieksander Priel von drei Stunden nach bis drei Stunden vor Tidehochwasser - die Schatzkammer - die nördlichen und südlichen Seitenpriele des Klotzenlochs. [...] In der Zeit vom 1. Juni bis 31. August soll zu Seehundbänken wegen der Jungenaufzucht ein Abstand von 300 m, oder wo es möglich ist, 500 m eingehalten werden. [...] Die Vereinbarung gilt zwischen Nationalparkamt Land den unterzeichnenden Erwerbs- und Hobbyfischern."

HW-gefährdeter Bereich Tidegebiet Elbe Hamburg

Hochwasser gefährdeter Bereich Tidegebiet Elbe Hamburg Fachliche Beschreibung: „Der durch Tidehochwasser, insbesondere Sturmfluten, gefährdete Bereich im Tidegebiet der Elbe besteht aus den Landflächen zwischen der Gewässerlinie der Elbe (§ 3) und der Linie der öffentlichen Hochwasserschutzanlagen oder, sofern öffentliche Hochwasserschutzanlagen nicht bestehen, der Linie des amtlich bekannt gemachten Bemessungswasserstands für öffentliche Hochwasserschutzanlagen zuzüglich eines Sicherheitszuschlags von 0,50 m." Auszug aus § 53 HWaG Rechtlicher Hintergrund: § 53 des Hamburgischen Wassergesetzes (HWaG) in der Fassung vom 29.05.2005 über "Hochwassergefährdeter Bereich im Tidegebiet der Elbe"

Freiwillige Vereinbarung Schutz der Brandgansmauser mit der Hobbyfischerei 2021

Freiwillige Vereinbarung zum Schutz der mausernden Brandgänse Auszug aus der Vereinbarung zwischen Fischern / Hobbyfischern und dem Nationalparkamt: "In der Zeit vom 1. Juli bis 31. August jeden Jahres werden wegen der dort mausernden Brandenten folgende Prielströme und angrenzende Watten nicht befischt und befahren: - das Bielshövener Loch, der Flackstrom, der Dieksander Priel von drei Stunden nach bis drei Stunden vor Tidehochwasser - die Schatzkammer - die nördlichen und südlichen Seitenpriele des Klotzenlochs. [...] In der Zeit vom 1. Juni bis 31. August soll zu Seehundbänken wegen der Jungenaufzucht ein Abstand von 300 m, oder wo es möglich ist, 500 m eingehalten werden. [...] Die Vereinbarung gilt zwischen Nationalparkamt Land den unterzeichnenden Erwerbs- und Hobbyfischern."

HW-gefährdeter Bereich Tidegebiet Elbe Hamburg

Hochwasser gefährdeter Bereich Tidegebiet Elbe Hamburg Fachliche Beschreibung: „Der durch Tidehochwasser, insbesondere Sturmfluten, gefährdete Bereich im Tidegebiet der Elbe besteht aus den Landflächen zwischen der Gewässerlinie der Elbe (§ 3) und der Linie der öffentlichen Hochwasserschutzanlagen oder, sofern öffentliche Hochwasserschutzanlagen nicht bestehen, der Linie des amtlich bekannt gemachten Bemessungswasserstands für öffentliche Hochwasserschutzanlagen zuzüglich eines Sicherheitszuschlags von 0,50 m." Auszug aus § 53 HWaG Rechtlicher Hintergrund: § 53 des Hamburgischen Wassergesetzes (HWaG) in der Fassung vom 29.05.2005 über "Hochwassergefährdeter Bereich im Tidegebiet der Elbe"

EasyGSH-DB_TDKW: Quantile des Tidehub (1996-2015)

Die Quantile des Tidehub für 5%, 50% und 95%, jeweils für die Jahre 1996-2015 für die Deutsche Bucht (Ratserauflösung: 100 m) und die Ausschließliche Wirtschaftszone (Rasterauflösung: 1000 m). Als Tidehub wird der Mittlerer Höhenunterschied zwischen Tidehochwasser und den beiden benachbarten Tideniedrigwassern bezeichnet. Eine genaue Beschreibung der Analysemodi befindet sich im BAWiki (http://wiki.baw.de/de/index.php/Tidekennwerte_des_Wasserstandes). Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003 English Download: The data for download can be found under References ("Weitere Verweise"), where the data can be downloaded directly or via the web page redirection to the EasyGSH-DB portal.

EasyGSH-DB_TDKW: Quantile des Tidehochwassers (1996-2015)

Die Quantile des Tidehochwassers für 5%, 50% und 95%, jeweils für die Jahre 1996-2015 für die Deutsche Bucht (Ratserauflösung: 100 m) und die Ausschließliche Wirtschaftszone (Rasterauflösung: 1000 m). Als Tidehochwasser wird der höchste Wert der Tidekurve zwischen zwei aufeinanderfolgenden Tideniedrigwassern bezeichnet. Eine genaue Beschreibung der Analysemodi befindet sich im BAWiki (http://wiki.baw.de/de/index.php/Tidekennwerte_des_Wasserstandes). Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003 English Download: The data for download can be found under References ("Weitere Verweise"), where the data can be downloaded directly or via the web page redirection to the EasyGSH-DB portal.

EasyGSH-DB_TDKW: Quantile des Tideniedrigwasser (1996-2015)

Die Quantile des Tideniedrigwassers für 5%, 50% und 95%, jeweils für die Jahre 1996-2015 für die Deutsche Bucht (Ratserauflösung: 100 m) und die Ausschließliche Wirtschaftszone (Rasterauflösung: 1000 m). Als Tideniedrigwasser wird der niedrigster Wert der Tidekurve zwischen zwei aufeinanderfolgenden Tidehochwassern bezeichnet. Eine genaue Beschreibung der Analysemodi befindet sich im BAWiki (http://wiki.baw.de/de/index.php/Tidekennwerte_des_Wasserstandes). Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003 English Download: The data for download can be found under References ("Weitere Verweise"), where the data can be downloaded directly or via the web page redirection to the EasyGSH-DB portal.

EasyGSH-DB: Tidekennwerte des Wasserstandes (TDKW)

Motivation: Die Berechnung und graphische Darstellung der Tidekennwerte des Wasserstandes trägt maßgeblich dazu bei, einige Aspekte der Gezeitendynamik der norddeutschen Küstengewässer und Ästuarien quantifizieren und besser verstehen zu können. So tragen die grundlegenden Tidekenngrößen des Tidehochwassers, des Tideniedrigwassers sowie der damit eng verbundenen Werte für Tidestieg, Tidefall und Tidehub dazu bei, die Dynamik der Tide herauszuarbeiten. Diese variiert von Ort zu Ort, je nachdem ob dissipative Prozesse oder stärkende Effekte dominieren. Das Tidemittelwasser unterliegt geringeren Veränderungen als die vorherigen Größen. Trotzdem können darin im Zusammenhang mit dem Oberwasserabfluß, Windstau oder nichtlinearer Wechselwirkung stehende Vorgänge zum Ausdruck kommen. Eine genaue Beschreibung der Analysemodi befindet sich im BAWiki (http://wiki.baw.de/de/index.php/Tidekennwerte_des_Wasserstandes). Metadaten: Dieser Metadatensatz gilt als Elterndatensatz für die spezifizierten Metdatensätze: - EasyGSH-DB_TDKW: Quantile des Tidehochwassers (1996-2015) - EasyGSH-DB_TDKW: Quantile des Tideniedrigwassers (1996-2015) - EasyGSH-DB_TDKW: Quantile des Tidehub (1996-2015) - EasyGSH-DB_TDKW: mittleres Tidemittelwasser (1996-2015) - EasyGSH-DB_TDKW: Überflutungsdauer (1996-2015) - EasyGSH-DB_TDKW: Anzahl der Tideereignisse (1996-2015) Auflösung: Die Tidekennwerte des Wasserstandes werden für die Ausschließliche Wirtschaftszone im 1000 m Raster und die Deutsche Bucht im 100 m Raster bereitgestellt. Literatur: - Hagen, R., et.al., (2019), Validierungsdokument - EasyGSH-DB - Teil: UnTRIM-SediMorph-Unk, doi: https://doi.org/10.18451/k2_easygsh_1 - Freund, J., et.al., (2020), Flächenhafte Analysen numerischer Simulationen aus EasyGSH-DB, doi: https://doi.org/10.18451/k2_easygsh_fans_2 - Hagen, R., Plüß, A., Ihde, R., Freund, J., Dreier, N., Nehlsen, E., Schrage, N., Fröhle, P., Kösters, F. (2021): An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015). Earth System Science Data. https://doi.org/10.5194/essd-13-2573-2021 Für die einzelnen Jahre liegen Jahreskennblätter als Kurzfassung der Jahresvalidierung auf der EasyGSH-DB (www.easygsh-db.org) zur Verfügung. Zitat für diesen Datensatz (Daten DOI): Hagen, R., Plüß, A., Freund, J., Ihde, R., Kösters, F., Schrage, N., Dreier, N., Nehlsen, E., Fröhle, P. (2020): EasyGSH-DB: Themengebiet - Hydrodynamik. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0003 English Download: The data for download can be found under References ("Weitere Verweise"), where the data can be downloaded directly or via the web page redirection to the EasyGSH-DB portal.

Ausbau der Seehafenzufahrten - Die Rolle der BAW als Gutachter in der Planungs- und Genehmigungsphase

Das Projekt "Ausbau der Seehafenzufahrten - Die Rolle der BAW als Gutachter in der Planungs- und Genehmigungsphase" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Wasserbau durchgeführt. Die weltweiten Warentransporte werden zu über 90 Prozent auf dem Seeweg abgewickelt. Die Seehäfen dienen den Warenströmen als Anlaufstelle und haben daher eine besondere Bedeutung für den gesamten Welthandel. Auch die deutsche Volkswirtschaft ist auf eine leistungsfähige Infrastruktur der Seehäfen angewiesen, um das Außenhandelsvolumen von jährlich rund zwei Billionen Euro effizient umsetzen zu können. Um die Wettbewerbsfähigkeit deutscher Seehäfen international zu sichern, wurden sie, wie auch ihre Zufahrten, in der Vergangenheit immer wieder an die Anforderungen der modernen Seeschifffahrt angepasst. So wurden seit dem Ende des 19. Jahrhunderts viele Fahrrinnen verändert, beispielsweise an Ems, Jade, Weser und Elbe. Zusätzlich haben umfangreiche Küstenschutzmaßnahmen, wie etwa Eindeichungen, die ursprünglich natürlichen Tideflusssysteme nachhaltig verändert. Auch heute sind noch weitere Fahrrinnenanpassungen für die Unter- und Außenelbe, die Unter- und Außenweser und die Außenems geplant. Die Pläne werden auf Antrag eines Bundeslandes (überwiegend Niedersachsen, Hamburg, Bremen) von der Wasserstraßen- und Schifffahrtsverwaltung (WSV) des Bundes durchgeführt und der Planfeststellungsbehörde zur Genehmigung vorgelegt. Die BAW ist im Auftrag der WSV als Sonderfachgutachter an den Planungen beteiligt. Da Seehafenzufahrten wie beim Hamburger Hafen leicht 100 Kilometer lang sein können, ergeben sich großflächige zusammenhängende Eingriffsflächen. Die geplanten Fahrrinnenanpassungen zählen entsprechend zu den größten Infrastrukturprojekten Deutschlands, bei denen zahlreiche Nutzungskonflikte beachtet werden müssen. Dazu gehört, dass die Seeschifffahrt auf den Tideflüssen in einem besonders schützenswerten Ökosystem stattfindet. Darüber hinaus schließen sich meist Schutzgebiete von nationaler und europäischer Bedeutung an. Fahrrinnenanpassungen können daher komplexe Auswirkungen auf die biotischen und abiotischen Systemparameter eines Tideflusses haben. Im Rahmen der für die Planungen nach nationaler und europäischer Gesetzgebung erforderlichen Umweltverträglichkeitsprüfung besteht somit eine hohe Verantwortung der Gutachter bei der Ermittlung und Prognose der ausbaubedingten Auswirkungen auf das Ökosystem. Hieraus ergibt sich die besondere Bedeutung der BAW-Gutachten: Die von der BAW prognostizierten Auswirkungen auf die abiotischen Systemparameter sind Grundlage für die ökologische Bewertung. So werden durch einen Ausbau der Wasserstand (z. B. Tidehochwasser, Tideniedrigwasser, Sturmflutscheitelwasserstände), die Strömungen und der Salzgehalt beeinflusst. Auch müssen die Auswirkungen auf den Sedimenttransport und das Gewässerbett (Morphodynamik) der von Gezeiten geprägten Flüsse ermittelt werden. (Text gekürzt)

XtremRisk: Simulationen für extreme Sturmflutszenarien in der Tideelbe

Das Projekt "XtremRisk: Simulationen für extreme Sturmflutszenarien in der Tideelbe" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Wasserbau durchgeführt. Problemstellung und Ziel: Neben dem Anstieg des mittleren Meeresspiegels können auch häufigere oder verstärkte Sturmfluten zu den möglichen Folgen des Klimawandels in Küsten- und Ästuargebieten gehören. Die Folgen extremer Sturmfluten hinsichtlich Häufigkeit, Intensität und Verweildauer für den Hochwasser- und Küstenschutz sollen abgeschätzt werden, um mögliche Katastrophen abzuwenden. An diesem BMBF Verbundprojekt sind das Leichtweiß - Institut für Wasserbau der TU Braunschweig (LWI), das Forschungsinstitut Wasser und Umwelt (fwu) an der Universität Siegen, der Landesbetrieb Straßen, Brücken und Gewässer (LSBG) Hamburg und die TU Hamburg Harburg beteiligt. Die BAW ist Partner im Teilprojekt 1: Extreme Sturmfluten (Risikoquellen). Eine ausführliche Beschreibung des Projektes findet man unter http://www.xtremrisk.de/. Bedeutung für die WSV: Die BAW führt im Rahmen von Untersuchungen zu z. 8. Fahrrinnenanpassungen Simulationen und Analysen von Sturmfluten im Bereich der Seeschifffahrtsstraßen durch. Erkenntnisse aus dem Projekt XtremRisk werden der WSV helfen die Bundeswasserstrassen auf die möglichen Folgen des Klimawandels bei Extremereignissen wie Sturmfluten vorzubereiten. Untersuchungsmethoden: Im Rahmen von XtremRisk wird vom Projektpartner LSBG eine extrem hohe Sturmflut synthetisch zusammengesetzt und ein Wasserstandsverlauf für den Elbmündungsbereich bei Cuxhaven entwickelt. Außerdem werden Sturmflutszenarien aus dem KFKI Projekt MUSE, die von BSH und DWD in der Nordsee modelliert wurden, untersucht. Durch Vorgabe der Wasserstandsverläufe in der Elbmündung, der dazugehörenden Windentwicklung über der Elbe sowie der Vorgabe des Oberwasserzuflusses in die Elbe können bei der BAW diese synthetischen Sturmflutszenarien in der Elbe modelliert werde. Hierzu wird das hydrodynamische numerische Modell UnTRIM2004 (Casulli, V. und R. Walters, 2000 bzw. BAW, 2004) eingesetzt. Im Anschluss kann sowohl der zeitliche Verlauf des Wasserstandes an Orten von Interesse als auch die Analyseergebnisse Sturmflutscheitelwasserstand HW, Eintrittszeit des Sturmflutscheitelwasserstandes tHW und Dauer hoher Wasserstände DHW (LZKWF - BAW-Methoden-Wiki) an die Projektpartner weitergegeben werden. Zur Einordnung der Ergebnisse werden ergänzend Sensitivitätsuntersuchungen durchgeführt. Hierfür wird z.B. der Einfluss der Salzgehaltsverteilung im Ästuar auf die Sturmflutscheitelwasserstände betrachtet. Mit den Wasserstandszeitreihen aus dem Elbe -Modell der BAW betreibt anschließend der Projektpartner TU Harburg Ausschnittsmodelle der Elbe. Der Sturmflutscheitelwasserstand wird von LSBG und fwu für die statistische Bestimmung der Eintrittswahrscheinlichkeit dieser synthetischen Sturmflut verwendet.

1 2 3 4 58 9 10