Befliegung des gesamten Freiburger Stadtkreises am 01.06.2021. Die Rasterauflösung beträgt 20 cm, die Daten sind "Open Data". <table> <tr> <th>Technische Ausstattung </th> </tr> <tr><td>Flugzeug</td><td> Cessna 404 Titan (2-motorig), D – IAPD </td></tr> <tr><td>Kamera</td><td> IGI Urban Mapper II </td></tr> <tr><td>Objektiv</td><td> 5 x f = 90 mm </td></tr> <tr><td>Aufhängung</td><td> Somag GSM 3000 (kreiselstabilisiert) </td></tr> <tr><td>DGPS</td><td> NovAtel OEMV-3 L1/L2/L-Band Empfänger </td></tr> <tr><td>Inertial-System</td><td> AEROcontrol IMU-Ie, 128 Hz</td></tr> </table> <table> <tr> <th>Projektparameter </th> </tr> <tr><td>Bildflugdatum</td><td> 01.06.2021 </td></tr> <tr><td>Bodenauflösung/GSD (cm)</td><td> 7 (Nadir) / ~ 7 (Oblique) </td></tr> <tr><td>Fläche (km²)</td><td> 153 </td></tr> <tr><td>Anzahl Flugstreifen</td><td> 34 </td></tr> <tr><td>Anzahl Aufnahmeorte</td><td> 2.282 </td></tr> <tr><td>Bildüberdeckung Nadir</td><td> l = 80 % / q = 70 % </td></tr> <tr><td>Bildüberdeckung Oblique</td><td> l ~ 80 % / q ~ 50 % </td></tr> <tr><td>Mittlere Flughöhe ü. Grund (ft.)</td><td> ~ 5.500 </td></tr> <tr><td>Beginn Bildflug UTC *</td><td> 09:30 </td></tr> <tr><td>Ende Bildflug UTC *</td><td> 11:59</td></tr> </table>
Befliegung des gesamten Freiburger Stadtkreises am 06.03.2021. Die Bäume sind noch in unbelaubtem Zustand. Die Rasterauflösung beträgt 20 cm, die Daten sind "Open Data". <table> <tr> <th>Technische Ausstattung </th> </tr> <tr><td>Flugzeug</td><td> Cessna 404 Titan (2-motorig), D – IAPD </td></tr> <tr><td>Kamera</td><td> IGI Urban Mapper II </td></tr> <tr><td>Objektiv</td><td> 5 x f = 90 mm </td></tr> <tr><td>Aufhängung</td><td> Somag GSM 3000 (kreiselstabilisiert) </td></tr> <tr><td>DGPS</td><td> NovAtel OEMV-3 L1/L2/L-Band Empfänger </td></tr> <tr><td>Inertial-System</td><td> AEROcontrol IMU-Ie, 128 Hz</td></tr> </table> <table> <tr> <th>Projektparameter </th> </tr> <tr><td>Bildflugdatum</td><td> 06.03.2021 </td></tr> <tr><td>Bodenauflösung/GSD (cm)</td><td> 5 (Nadir) </td></tr> <tr><td>Fläche (km²)</td><td> 209 </td></tr> <tr><td>Anzahl Flugstreifen</td><td> 42 </td></tr> <tr><td>Anzahl Aufnahmeorte</td><td> 3.555 </td></tr> <tr><td>Bildüberdeckung Nadir</td><td> l = 80 % / q = 70 % </td></tr> <tr><td>Mittlere Flughöhe ü. Grund (ft.)</td><td> ~ 4.000 </td></tr> <tr><td>Beginn Bildflug UTC *</td><td> 09:59 </td></tr> <tr><td>Ende Bildflug UTC *</td><td> 13:15 </td></tr> </table>
Befliegung des gesamten Freiburger Stadtkreises am 20.03.2024. Die Bäume sind noch in unbelaubtem Zustand. Die Rasterauflösung beträgt 20 cm, die Daten sind "Open Data". <table> <tr> <th>Technische Ausstattung </th> </tr> <tr><td>Flugzeug</td><td> Cessna 404 Titan (2-motorig), D – IAPD </td></tr> <tr><td>Kamera</td><td> IGI Urban Mapper 2-P </td></tr> <tr><td>Objektiv</td><td> 1 x f = 90 mm (Nadir) / 4 x f = 110 mm (Oblique) </td></tr> <tr><td>Aufhängung</td><td> Somag GSM 3000 (kreiselstabilisiert) </td></tr> <tr><td>DGPS</td><td>NovAtel OEMV-3 L1/L2/L-Band Empfänger</td></tr> <tr><td>Inertial-System</td><td>AEROcontrol IMU-Ie, 128 Hz</td></tr> </table> <table> <tr> <th>Projektparameter </th> </tr> <tr><td>Bildflugdatum</td><td>20.03.2024</td></tr> <tr><td>Bodenauflösung/GSD (cm)</td><td>5 (Nadir) / ~ 5 (Oblique)</td></tr> <tr><td>Fläche (km²)</td><td>209</td></tr> <tr><td>Anzahl Flugstreifen</td><td>43</td></tr> <tr><td>Anzahl Aufnahmeorte</td><td>4.421</td></tr> <tr><td>Bildüberdeckung Nadir</td><td> l = 80 % / q = 70 % </td></tr> <tr><td>Bildüberdeckung Oblique</td><td> l ~ 80 % / q ~ 50 % </td></tr> <tr><td>Mittlere Flughöhe ü. Grund (ft.)</td><td>~ 4.700 – 6.500</td></tr> <tr><td>Beginn Bildflug UTC *</td><td>09:39</td></tr> <tr><td>Ende Bildflug UTC *</td><td>13:03</td></tr> </table>
Befliegung des gesamten Freiburger Stadtkreises am 20.03.2024. Infrarot-Luftbilder ermöglichen Rückschlüsse auf die Vitalität der Vegetation. Die Rasterauflösung beträgt 20 cm, die Daten sind "Open Data". <table> <tr> <th>Technische Ausstattung </th> </tr> <tr><td>Flugzeug</td><td> Cessna 404 Titan (2-motorig), D – IAPD </td></tr> <tr><td>Kamera</td><td> IGI Urban Mapper 2-P </td></tr> <tr><td>Objektiv</td><td> 1 x f = 90 mm (Nadir) / 4 x f = 110 mm (Oblique) </td></tr> <tr><td>Aufhängung</td><td> Somag GSM 3000 (kreiselstabilisiert) </td></tr> <tr><td>DGPS</td><td>NovAtel OEMV-3 L1/L2/L-Band Empfänger</td></tr> <tr><td>Inertial-System</td><td>AEROcontrol IMU-Ie, 128 Hz</td></tr> </table> <table> <tr> <th>Projektparameter </th> </tr> <tr><td>Bildflugdatum</td><td>20.03.2024</td></tr> <tr><td>Bodenauflösung/GSD (cm)</td><td>5 (Nadir) / ~ 5 (Oblique)</td></tr> <tr><td>Fläche (km²)</td><td>209</td></tr> <tr><td>Anzahl Flugstreifen</td><td>43</td></tr> <tr><td>Anzahl Aufnahmeorte</td><td>4.421</td></tr> <tr><td>Bildüberdeckung Nadir</td><td> l = 80 % / q = 70 % </td></tr> <tr><td>Bildüberdeckung Oblique</td><td> l ~ 80 % / q ~ 50 % </td></tr> <tr><td>Mittlere Flughöhe ü. Grund (ft.)</td><td>~ 4.700 – 6.500</td></tr> <tr><td>Beginn Bildflug UTC *</td><td>09:39</td></tr> <tr><td>Ende Bildflug UTC *</td><td>13:03</td></tr> </table>
Befliegung des gesamten Freiburger Stadtkreises am 01.06.2021. Infrarot-Luftbilder ermöglichen Rückschlüsse auf die Vitalität der Vegetation. Die Rasterauflösung beträgt 20 cm, die Daten sind "Open Data". <table> <tr> <th>Technische Ausstattung </th> </tr> <tr><td>Flugzeug</td><td> Cessna 404 Titan (2-motorig), D – IAPD </td></tr> <tr><td>Kamera</td><td> IGI Urban Mapper II </td></tr> <tr><td>Objektiv</td><td> 5 x f = 90 mm </td></tr> <tr><td>Aufhängung</td><td> Somag GSM 3000 (kreiselstabilisiert) </td></tr> <tr><td>DGPS</td><td> NovAtel OEMV-3 L1/L2/L-Band Empfänger </td></tr> <tr><td>Inertial-System</td><td> AEROcontrol IMU-Ie, 128 Hz</td></tr> </table> <table> <tr> <th>Projektparameter </th> </tr> <tr><td>Bildflugdatum</td><td> 01.06.2021 </td></tr> <tr><td>Bodenauflösung/GSD (cm)</td><td> 7 (Nadir) / ~ 7 (Oblique) </td></tr> <tr><td>Fläche (km²)</td><td> 153 </td></tr> <tr><td>Anzahl Flugstreifen</td><td> 34 </td></tr> <tr><td>Anzahl Aufnahmeorte</td><td> 2.282 </td></tr> <tr><td>Bildüberdeckung Nadir</td><td> l = 80 % / q = 70 % </td></tr> <tr><td>Bildüberdeckung Oblique</td><td> l ~ 80 % / q ~ 50 % </td></tr> <tr><td>Mittlere Flughöhe ü. Grund (ft.)</td><td> ~ 5.500 </td></tr> <tr><td>Beginn Bildflug UTC *</td><td> 09:30 </td></tr> <tr><td>Ende Bildflug UTC *</td><td> 11:59</td></tr> </table>
GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.
In der ehemaligen DDR wurden in den Jahren 1980 bis 1990 in den an der Erdoberfläche anstehenden bzw. gering von Känozoikum überdeckten präoberpermischen Grundgebirgseinheiten (Flechtingen-Roßlauer Scholle, Harz, Sächsisches Granulitgebirge, Thüringer Wald, Thüringisch-Vogtländisches Schiefergebirge, Erzgebirge, Elbtalzone/Lausitz) Untersuchungen zur Einschätzung der Rohstoffführung durchgeführt. Bestandteil dieser Untersuchungen war eine geochemische Prospektion im Bereich der genannten Grundgebirgseinheiten. Auf einer Fläche von fast 15.000 km² wurden ca. 18.000 Wasser- und ca. 17.500 Bachsedimentproben entnommen und geochemisch untersucht. Die Ergebnisse dieser Untersuchungen wurden in Teilberichten zu den einzelnen Grundgebirgseinheiten sowie im „Abschlussbericht zur vergleichenden Bewertung der Rohstofführung in den Grundgebirgseinheiten der DDR“ (Röllig et al., 1990) dokumentiert. Bei diesen Daten aus den Grundgebirgseinheiten im Südteil der ehemaligen DDR handelt es sich um eine in ihrer hohen Probenahmedichte (> 1 Probe/km²) einzigartige flächendeckende geochemische Aufnahme dieser Gebiete. Alle späteren geochemischen Untersuchungen (Geochemischer Atlas 2000 sowie im Rahmen von GEMAS und FOREGS) wurden mit einer ungleich geringeren Probenahmedichte durchgeführt. Diese wertvollen und unwiederbringlichen Daten werden nun über das Geoportal der BGR allgemein verfügbar gemacht. Ergänzend zur digitalen Bereitstellung des originalen Datenmaterials erfolgt erstmals eine Bereitstellung mit modernen computergestützten Verfahren erstellter flächendeckender Verteilungskarten. Die Downloads zeigen die Verteilung der Titangehalte in Bachsedimenten in vier verschiedenen farbigen Punkt- und Isoflächenkarten.
The nanoparticulate titanium dioxide NM-105 was investigated in two tests with Lumbriculus variegatus in a sediment-water system according to the OECD TG 225 [5]. The nominal test concentrations in the first test were 15; 23; 39; 63 and 100 mg/L NM-105 and 100 mg/L NM-105 in the second test. Chemical analysis of titanium concentrations in test media in the first test showed good agreement with nominal test concentrations. Veröffentlicht in Texte | 06/2013.
Systemraum: Bereitstellung der Rohstoffe und Produktion Geographischer Bezug: Europa Zeitlicher Bezug: 2000-2004 Weitere Informationen: Herstellung eines Golf A4 Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Produktion: Produktion: 53049391 Stück im Jahr 2007 Anteile Länder: Südkorea 7,0% USA 7,4% Deutschland 10,8% China 12,0% Japan 18,7% Zusammensetzung : Stahl und Eisen 65,7% Kunststoffe 12,1% Benzin/Öl/Fett 5,7% Gummi 5,0% Leichtmetall 3,3% Glas 2,9% E-Motor + Kabel 2,1% NE-Metalle (Blei, Chrom, Kupfer, Titan) 1,3% Lacke 1,0% Dämmstoffe 0,7% Sonstige 0,1% Anteile Länder an Stückzahlen: Frankreich 16% Japan 10% Spanien 10% UK 7% Belgien 7% USA 7% Italien 6% Tschechien 6% Korea 5% Anteile Länder an Tonnen: Frankreich 15% Japan 10% USA 10% Spanien 9% Belgien 8% UK 7% Italien 5% Tschechien 5% Korea 5% Import: 2196588Stück
HDPE-Polymerisation: In diesem Prozess wird die Polymerisation von Ethylen zu HDPE (High Density PolyEthylen) betrachtet. HDPE - und ebenso LLDPE (Linear Low Density PolyEthylen) - wird in Niederdruckreaktoren nach drei verschiedenen Verfahren hergestellt: 1. "slurry process" (eine Art von Suspensionsverfahren) 2. Lösungsverfahren 3. Gasphaseverfahren Beim "slurry process" wird Ethylen mit einem Katalysator (Ziegler), Lösungsmittel und weiteren Hilfs- und Zusatzstoffen in einem Reaktor polymerisiert. Es entsteht ein Gemisch aus Polymer (HDPE), nicht umgesetztem Monomer, Lösungsmittel und Reststoffen. Monomer und Lösungsmittel werden wiederverwendet. Das Polymer wird getrocknet und zu Granulat weiterverarbeitet. Das Verfahren in Lösung ist ähnlich dem "slurry process", die Reaktion findet aber bei höherer Temperatur statt. Im Unterschied dazu arbeitet das Gasphaseverfahren ohne den Zusatz eines Lösungsmittels. Prozeßsituierung Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedenen Polymere unterscheiden: HDPE (High Density PolyEthylen), LLDPE (Linear Low Density PolyEhylen) und LDPE (Low Density PolyEthylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t für das Jahr 1990 können der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). In Westeuropa wurden nach (APME 1994) 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE produziert (Gesamtsumme: 9,737 Mio. t PE). Wegen der schlechten Datenlage und da weiterhin LLDPE in geringeren Mengen hergestellt wird, wurden für dieses Polymer keine eigenen Kennziffern generiert. Aufgrund der gleichen Herstellungsverfahren wie bei HDPE können für LLDPE näherungsweise die hier vorliegenden Kennziffern verwendet werden. Für die Bilanzierung der HDPE-Herstellung wurden die Literaturquellen (#2, Tellus 1992,#1, PWMI 1993, #3) und (Ullmann 1992) untersucht. Die Daten der Studien #2 (Energiewerte) und (Tellus 1992) (Abwasserwerte) beziehen sich auf die Herstellung von HDPE in den USA und repräsentieren den Stand der Technik der 80er Jahre. Die Studie #1 (Massenbilanz) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die HDPE-Herstellung pro Tonne Produkt 1015 kg Ethylen eingesetzt. Dieser Wert zeigt eine gute Übereinstimmung mit den Angaben (1020 kg) der Tellus-Studie (Tellus 1992). Für die Polymerisationsreaktion werden ein spezieller Olefinzusatz (5 kg) sowie weitere Hilfsstoffe und Zusätze (9 kg) benötigt (#1). Da die aufgeführten Stoffe in Quelle nicht weiter spezifiziert werden, können nur nachfolgende Annahmen gemacht werden: · unter spezieller Olefinzusatz sind Stoffe zur Regulierung der Kettenlänge des Polymers zu verstehen (z. B. Wasserstoff zum Abbruch der Polymerisation) · unter die verbleibenden 9 kg fallen Stoffe wie Katalysator und Lösungsmittel, diese werden im Gegensatz zu dem Olefinzusatz nicht in das Produkt eingebaut und können zurückgewonnen werden. An festen Abfällen entsteht bei der Polymerisation eine Menge von 0,1 kg. Da in der Tellus-Studie keinerlei quantitative Angaben zu Hilfsstoffen oder Zusätzen gemacht werden, werden für die Genese der Massenbilanz die Werte von BUWAL verwendet. Energiebedarf: Nach #2 wird für die Herstellung einer Tonne HDPE nach dem slurry-Verfahren 1685,1 btu/lb (359,7 btu/lb elektrische Energie, 1378,4 btu/lb Energiegehalt des benötigten Dampfes) und nach dem Lösungsverfahren 1858,0 btu/lb (479,6 btu/lb elektrische Energie, 1378,4 btu/lb Energiegehalt des benötigten Dampfes) Energie benötigt (für das Gasphaseverfahren liegen dort keine Daten vor). Legt man einen Anteilsmix von 4,625 zu 1 [gemäß 74 % slurry-Verfahren und 10 % Lösungsverfahren nach (Tellus 1992)] zugrunde, errechnet sich daraus für die HDPE-Polymerisation ein Energiebedarf von ca. 4,0 GJ/t (0,9 GJ/t elektrische Energie, 3,1 GJ/t Energiegehalt des benötigten Dampfes). Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung einer Tonne HDPE (15,4 GJ) setzt sich dort aus der elektrischen Energie (8,7 GJ) und dem Energiegehalt des benötigten Dampfes (6,6 GJ) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu HDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der HDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 8 GJ grob abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der HDPE-Herstellung können unter anderem beim Trocknen des Polymers, der Extrusion und beim Recycling des Monomers (Ethylen) flüchtige organische Verbindungen (VOC) entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der HDPE-Herstellung (Bezug: Westeuropa) abgeschätzt. Daraus ergibt sich ein Wert von ca. 6 kg VOC/t HDPE. Abwasser: (BUWAL 1991) kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von HDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort Titan, 0,0409 lbs/ton HDPE (umgerechnet 0,020 kg/t), Aluminium 0,0281 lbs/ton (umgerechnet 0,014 kg/t) und Phenol, 0,000004 lbs/ton (umgerechnet 0,000002 kg/t) aufgeführt. Die Angaben bei Tellus beziehen sich auf einen Verfahrensmix von 90 % Lösungs- und 10 % Gasphaseverfahren, wobei letzterem Verfahren keine Abwasseremissionen zugerechnet wurden. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Origin | Count |
---|---|
Bund | 310 |
Land | 121 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 239 |
Messwerte | 107 |
Taxon | 3 |
Text | 49 |
Umweltprüfung | 1 |
unbekannt | 19 |
License | Count |
---|---|
closed | 20 |
open | 345 |
unknown | 52 |
Language | Count |
---|---|
Deutsch | 413 |
Englisch | 30 |
Resource type | Count |
---|---|
Archiv | 143 |
Bild | 1 |
Datei | 51 |
Dokument | 45 |
Keine | 150 |
Webdienst | 5 |
Webseite | 212 |
Topic | Count |
---|---|
Boden | 317 |
Lebewesen & Lebensräume | 279 |
Luft | 278 |
Mensch & Umwelt | 417 |
Wasser | 251 |
Weitere | 410 |