The data set bundle comprises geochemical, XRF core scanning and pollen data from composite sediment core BIS-2000, which was compiled from two parallel sediment cores (BIS-1 and BIS-3) obtained near Bispingen, northern Germany (53.071528°N, 9.989861°E, 82.0 m). BIS-2000 comprises Last Interglacial (Eemian) to early Last Glacial (Weichselian) palaeolake deposits, which cover the section between 15.55 and 30.68 m composite depth. The data set Bispingen BIS-2000 XRF contains results of XRF core scanning. Analyses were carried out at the GFZ German Research Centre for Geosciences in Potsdam, Germany, on the section between 15.08 and 31.20 m composite depth. Split sediment core segments were scanned with an ITRAX XRF core scanner and measured intensities of silicon, calcium and titanium were used to calculate the log-ratios log(Si/Ti) and log(Ca/Ti).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
Trace element contents in microg/g measured on the <2 microns, 2-20 microns size fractions and bulk samples from LGM European loess sequences. Samples were crushed in an agate mortar and trace element concentrations were measured following Chauvel et al. (2011). Reproducibility for trace element analyses is better than 5% based on repeat measurements, and the accuracy is also better than 5%, based on the analyses of international rock standards (JSD-1, JSD-3 and LKSD-1.
1969 liess sich in der Naehe von Nordenham (Weser gegenueber Bremerhaven) das Chemieunternehmen Kronos-Titan nieder. Um die Folgen der Abwassereinleitung durch die Firma festzustellen, wurde im Dezember 1967 ein Monitoring-Programm zur Beweissicherung begonnen. Auf diese Weise wurden der Status vor der Inbetriebnahme und durch Langzeituntersuchungen die oekologischen Auswirkungen nach der Inbetriebnahme der Chemieanlage untersucht. Die Untersuchungen umfassen sowohl das Mikroplankton als auch das Makrozoobenthos. Fuer die Plankton-Erfassung werden einmal pro Jahr (meist im Juni) 22 Proben zwischen dem Leuchtturm 'Roter Sand' und Bremen entnommen; neben den Mikroplanktonorganismen werden die physikalisch-chemischen Begleitparameter O2, Temperatur, Salzgehalt, Truebung, Chlorophyll und Naehrsalze bestimmt. Zweimal im Jahr wird an 7 Stationen in der Naehe des Unternehmens das Makrozoobenthos, die Sedimentbeschaffenheit und der Schwermetallgehalt im Sediment und ausgewaehlten Organismengruppen erfasst.
Vier der größten Massenaussterben im Phanerozoikum (Ende Guadalupian, Perm-Trias, Ende Trias und Ende Kreide) sowie mehrere kleinere Aussterbeereignisse treten gleichzeitig mit kontinentalem Flutbasaltvulkanismus auf. Daher wird angenommen, dass der massive Vulkanismus globale Umweltänderungen mit schneller und signifikanter Erderwärmung und mariner Anoxia verursacht, wodurch die Massenaussterben ausgelöst werden. Allerdings bleibt die Zusammensetzung der klimaändernden Gase (CO2, SO2, CH4 oder Halogene) sowie deren Quelle (Magmenentgasung, Kontaktmetamorphose von Sedimenten, recykeltes Krustenmaterial im Mantel) umstritten. Die Ursachen der Umweltänderungen können besser bestimmt werden, wenn die Zeitpunkte und die Dauer der vulkanischen Eruptionen und der klimatischen und biologischen Ereignisse relativ zueinander bekannt sind. Allerdings treten diese Prozesse in Zeitspannen von weniger als 10^6 Jahren und vermutlich sogar weniger als 10^4 bis 10^5 Jahren auf (vergleichbar mit der aktuellen anthropogenen Treibhausgasemission), d.h. außerhalb der zeitlichen Auflösung von radiometrischen Datierungsmethoden. Daher wollen wir neue Spurenelementproxies für massive vulkanische Eruptionen in Sedimenten entwickeln, mit denen wir die relative Dauer der Ereignisse des Vulkanismus, der Klimaänderung und der Aussterbeprozesse in sedimentären Abfolgen bestimmen können. Volatile Spurenelemente wie Hg, Tl, In, Pb, Bi, Cd, Te, Se, Sn, Cs, Sb und As werden bei vulkanischen Eruptionen in großen Mengen freigesetzt und wurden in vulkanischen Gasen und Sublimaten an aktiven Vulkanen gemessen. Während massiver Eruptionen können sehr große Mengen dieser Elemente in die Atmosphäre gelangen und weit verbreitet in Sedimenten abgelagert werden. Die relative Konzentration von Hg wurde bereits als Proxy für vulkanische Eruptionen in Sedimenten genutzt, wobei allerdings Hg auch in organischem Material in Sedimenten angereichert wird. Das Verhalten der meisten volatilen Elemente wurde bisher nur unzureichend untersucht und daher wollen wir die Konzentrationen aller volatiler Elemente in Sedimentabfolgen der Grenzen des Changhsingian-Induan (Perm-Trias) und Pliensbach-Toarc bestimmen, um die zeitliche Entwicklung des Klimas und der Organismen mit den Eruptionen der Sibirischen und Karoo Flutbasalte zu vergleichen. Die Sedimentabfolgen lassen möglicherweise eine zeitliche Auflösung von weniger als 10^4 Jahren zu. Mit diesen Ergebnissen können wir die Zeitskalen der Effekte von Flutbasalteruptionen auf die Entwicklung des Klimas und des Lebens auf der Erde sowie die Quellen und Zusammensetzung der klimarelevanten Gase bestimmen.
| Origin | Count |
|---|---|
| Bund | 349 |
| Kommune | 1 |
| Land | 1165 |
| Wissenschaft | 50 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Chemische Verbindung | 40 |
| Daten und Messstellen | 1197 |
| Ereignis | 1 |
| Förderprogramm | 243 |
| Gesetzestext | 14 |
| Taxon | 3 |
| Text | 50 |
| Umweltprüfung | 1 |
| unbekannt | 22 |
| License | Count |
|---|---|
| geschlossen | 55 |
| offen | 691 |
| unbekannt | 803 |
| Language | Count |
|---|---|
| Deutsch | 1482 |
| Englisch | 848 |
| Resource type | Count |
|---|---|
| Archiv | 132 |
| Bild | 1 |
| Datei | 428 |
| Dokument | 339 |
| Keine | 610 |
| Webdienst | 5 |
| Webseite | 503 |
| Topic | Count |
|---|---|
| Boden | 1316 |
| Lebewesen und Lebensräume | 1386 |
| Luft | 1332 |
| Mensch und Umwelt | 1549 |
| Wasser | 1315 |
| Weitere | 1496 |