API src

Found 46 results.

Teilprojekt C 03: Enzymatischer Abbau von Mikroplastik

Das Projekt "Teilprojekt C 03: Enzymatischer Abbau von Mikroplastik" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Chemie, Arbeitsgruppe Biochemie III durchgeführt. Obwohl die meisten Kunststoffe sehr biostabil sind, gibt es klare Belege dafür, dass Mikroben diese Materialien enzymatisch abbauen können. Durch die Kombination verschiedener biochemischer und experimenteller Techniken mit Computersimulationen wollen wir verstehen, welche Eigenschaften ein Enzym haben muss, um Kunststoffe effizient angreifen und abbauen zu können. In dieser Hinsicht wird das kürzlich entdeckte Enzym PETase, das PET abbauen kann, als Modellsystem dienen. Dieses Enzym ist besonders interessant, da es strukturell und funktionell eng mit der Enzymegruppe der Cutinasen verwandt ist, von denen einige Vertreter auch PET angreifen können, wenn auch weniger effizient. Andere Cutinasen sind dazu jedoch nicht in der Lage. Darüber hinaus wollen wir nach neuen Enzymen suchen, die Kunststoffe wie zum Beispiel Polystyrol abbauen.

Teilprojekt C 05: Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft

Das Projekt "Teilprojekt C 05: Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Ingenieurwissenschaften, Lehrstuhl für Bioprozesstechnik durchgeführt. Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?

Teilprojekt B 06: Verhalten und Transport von Mikroplastik in gestörten und ungestörten Böden

Das Projekt "Teilprojekt B 06: Verhalten und Transport von Mikroplastik in gestörten und ungestörten Böden" wird vom Umweltbundesamt gefördert und von Universität Köln, Geographisches Institut, Arbeitsgruppe Ökosystemforschung durchgeführt. Die Kontamination von Ökosystemen durch Mikroplastik (MP) wurde bislang vor allem für aquatische Systeme beschrieben. Inzwischen ist allerdings bekannt, dass auch Böden davon betroffen sind. Das Ziel dieses Teilprojekts ist es, ein grundlegendes mechanistisches Verständnis von Verhalten und Transport von MP-Partikeln in Böden in Abhängigkeit von den physikalischen und chemischen Eigenschaften der Kunststoffe zu erlangen. In dieser Phase des SFBs konzentrieren wir uns auf die Modellsysteme 'Durchflusszelle', 'Bodensäule' und 'Bodenkasten' und untersuchen die Teilaspekte (I) Transport von MP in porösen Medien und Böden, (II) Transport, Erosion und Deposition von MP an Bodenoberflächen und (III) Detektion, Quantifizierung und Visualisierung von MP in Böden. In (I) und (III) berücksichtigen wir zudem die Rolle von Bodenorganismen für Transport und Verteilung von MP-Partikeln in Böden. Das in diesem Teilprojekt gewonnene mechanistische Verständnis zum Verhalten und Transport von MP-Partikeln ist für eine wissenschaftlich fundierte Bewertung der Umweltrisiken von MP existierender Massenkunststoffe im Ökosystem Boden unerlässlich.

Teilprojekt B 02: Verhalten und Transport von Mikroplastik in der strömungsarmen Wassersäule

Das Projekt "Teilprojekt B 02: Verhalten und Transport von Mikroplastik in der strömungsarmen Wassersäule" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Themenbereich Wasserressourcen und Umwelt, Department Hydrogeologie durchgeführt. Ziel des Projektes B02 ist, die Wechselwirkungen zwischen physikalischen, biogeochemischen und biologischen Einflüssen auf Transport, Sedimentation und Verteilung von MP in stehenden Gewässern zu verstehen. Neben Faktoren, die die Eigenschaften der Wassersäule definieren, wie z. B. Wasserchemismus, Turbulenzen, Dichtegradienten, Schichtung und Schwebstoffgehalt wird auch der Einfluss der physikalisch-chemischen Eigenschaften von definiertem Modell-MP während des Aufenthaltes in der Wassersäule (Partikelgröße, Kunststofftyp, Form, Oberflächenchemismus), die mikrobielle Besiedlung und Biofilmbildung sowie der organismische Transport von MP in der Wassersäule untersucht um deren Einfluss auf das Transportverhalten von MP zu verstehen. Diese Kombination aus modellhaften Labor-, und kontrollierten Mesokosmenstudien sowie hydrodynamischer Modellierung wird ein wissenschaftlich fundiertes Verständnis des MP-Transports in stehenden Gewässern ermöglichen.

Teilprojekt Z 03: Zentrales Verwaltungsprojekt

Das Projekt "Teilprojekt Z 03: Zentrales Verwaltungsprojekt" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Tierökologie I durchgeführt.

Teilprojekt C 01: Entstehung und Abbau von Mikroplastik unter simulierten Umwelteinflüssen

Das Projekt "Teilprojekt C 01: Entstehung und Abbau von Mikroplastik unter simulierten Umwelteinflüssen" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Polymere Werkstoffe durchgeführt. In Projekt C01 wird die Entstehung von sekundärem Mikroplastik aus makroskopischen Kunststoffformkörpern und der weitere Zerfall durch Einwirkung von UV-Strahlung, Wasser und mechanischen Kräften untersucht. Dazu werden verschiedene Kunststoffe in reiner und additivierter Form durch beschleunigte Bewitterungsprozesse gealtert und hinsichtlich ihrer mechanischen Eigenschaften und molekularen Struktur charakterisiert. So verbinden wir Rissbildung und -fortschritt mit Molekulargewicht, Kettenbruch bzw. Endgruppen der Makromolekülketten sowie Additivkonzentration bzw. -migration. Hierzu wird eine breite Palette verschiedener Techniken von mechanischen Analysen über Massenspektrometrie bis hin zur Festkörper-NMR-Spektroskopie genutzt. Durch Korrelation dieser Ergebnisse, die von mikroskopischen bis hin zu makroskopischen Längenskalen reichen, wird ein vertieftes Verständnis der Mechanismen und der zeitlichen Abläufe des Abbaus von Kunststoffen in der Natur erreicht.

Teilprojekt B 04: Partikelaustausch an der Luft-Wasser-Grenzfläche

Das Projekt "Teilprojekt B 04: Partikelaustausch an der Luft-Wasser-Grenzfläche" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Mathematik und Physik, Physikalisches Institut durchgeführt. Fällt ein Regentropfen auf eine Wasseroberfläche oder platzt dort eine Gasblase, so wird in einem komplizierten strömungsmechanischen Prozess eine Vielzahl kleinster Tröpfchen produziert und in die Luft geschleudert. Diese Tröpfchen können ursprünglich im Wasser vorhandene Mikroplastikpartikel in die Luft übertragen. Da sowohl Regen als auch platzende Gasblasen in natürlichen und technischen Systemen wie Ozeanen, Pfützen oder Kläranlagen extrem häufige Ereignisse sind, liegt hier ein potenziell hochrelevanter Migrationspfad von Mikroplastik aus der Hydro- in die Atmosphäre vor. Dieser Prozess soll im vorliegenden Projekt durch eine Kombination aus Modell-Experimenten und Computersimulationen im Detail untersucht und verstanden werden.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze

Das Projekt "Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Tierökologie I durchgeführt. Die ubiquitäre Kontamination der Umwelt durch Mikroplastik (MP), die damit verbundenen potenziellen Risiken für Ökosysteme und letztendlich für unsere Gesundheit ist in letzter Zeit sehr stark in den Blickpunkt des öffentlichen und wissenschaftlichen Interesses gerückt. Das junge Forschungsfeld MP hat sich bis dato vorwiegend auf die Entwicklung geeigneter Monitoringverfahren, auf die quantitative Abschätzung der Kontamination der Umwelt, auf die Identifikation relevanter Eintragspfade und auf erste Eintragsminimierungsansätze beschränkt. Ökotoxikologische Fragestellungen wurden zumeist mit Hilfe fabrikneuer Kunststoffe untersucht. Bei all diesen Ansätzen fehlte jedoch bislang ein fundamentales Verständnis von den physikalischen, chemischen und biologischen Prozessen, denen MP in der Umwelt unterworfen ist. Die wissenschaftliche Komplexität der Thematik MP erfordert für ein ebensolches Verständnis jedoch einen interdisziplinären Ansatz, der die traditionellen Fachgrenzen überbrückt. Das Ziel dieser SFB-Initiative ist es daher - ausgehend von Modellsystemen für Kunststoffe, Organismen und Umweltkompartimente - ein grundlegendes Verständnis jener Prozesse und Mechanismen zu erlangen, die in Abhängigkeit von den physikalischen und chemischen Eigenschaften der Kunststoffe (A) die biologische Effekte von MP in limnischen und terrestrischen Ökosystemen bedingen, (B) die Migrationsbewegungen der MP-Partikel in und zwischen Umweltkompartimenten beeinflussen sowie (C) die Bildung von MP ausgehend von makroskopischen Kunststoffen verursachen. Diese Erkenntnisse werden erstmals eine wissenschaftlich fundierte Grundlage für die Bewertung der Umweltrisiken von MP existierender Massenkunststoffe bieten. Darauf aufbauend sollen - bereits in der ersten Antragsphase beginnend - neue umweltfreundliche Kunststoffe im Sinne einer nachhaltigen Polymerchemie entwickelt und anhand von Modellsystemen verifiziert werden. Diese neuen Kunststoffe werden unter anderem schnellere Abbauprozesse durch die Applikation von Beschleunigern und strukturellen Modifikationen aufweisen und werden zur Vermeidung bzw. Reduzierung von MP beitragen. Aufgrund der gewonnenen umfassenden Erkenntnisse aus Phase I sollen zudem auf längere Sicht (Phase II und III) Kunststoffe gezielt so modifiziert werden, dass sie aufgrund ihrer neuen Eigenschaften keine schädigenden Effekte auf Organismen und auf die Umwelt insgesamt mehr aufweisen. Die Komplexität der untersuchten Modellsysteme soll im Verlauf des SFB 1357 gesteigert werden, um eine möglichst hohe Relevanz in Bezug auf reale Ökosysteme zu erreichen.

Teilprojekt A 05: Auswirkungen von Mikroplastik-Partikeln auf zellulärer Ebene

Das Projekt "Teilprojekt A 05: Auswirkungen von Mikroplastik-Partikeln auf zellulärer Ebene" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Ingenieurwissenschaften, Lehrstuhl für Bioprozesstechnik durchgeführt. Teilprojekt A05 hat zum Ziel die Auswirkungen von Mikroplastik-Partikeln (1 bis 5 Mikro m) auf zellulärer Ebene zu untersuchen. An vier Modell-Zelllinien sollen Aufnahme, intrazelluläre Verteilung, Abbau/Ausscheidung, sowie physiologische Effekte untersucht werden. Weitere Studien werden an einfachen Gewebeverbünden (2D- und 3D-Mikrogeweben) sowie an Primärzellen der Modellorganismen des SFB durchgeführt. Neben den Mikroplastik-Partikeln des SFB werden auch Tonmineralien und Celluloseacetat-Partikel vergleichbarer Größe und Oberflächenbeschichtung untersucht, um spezifische MP-Effekte von etwaigen generischen Effekten nach Kontakt mit Mikro m-Partikeln abzugrenzen.

Teilprojekt A 02: Auswirkungen von Mikroplastik-Partikel auf bodenlebende terrestrische Modellmakrofauna und deren assoziierte Mikrobiota

Das Projekt "Teilprojekt A 02: Auswirkungen von Mikroplastik-Partikel auf bodenlebende terrestrische Modellmakrofauna und deren assoziierte Mikrobiota" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Tierökologie I durchgeführt. Im Projekt A02 sollen die Auswirkungen der Ingestion von Mikroplastik (MP) -Partikeln an zwei terrestrischen Modellorganismen, dem im Boden lebenden und Substrat-fressenden Kompostwurm Eisenia fetida sowie der Boden-nistenden omnivoren Ameisenart Camponotus floridanus, untersucht werden. Ziel ist es eine systematische Untersuchung der Effekte von MP der am weitesten verbreiteten und damit umweltrelevanten Kunststoffsorten mit unterschiedlichen Morphologien, Größe und Konzentration der Partikel mit zwei terrestrischen Modellorganismen durchzuführen, um die Wirkmechanismen besser verstehen zu können. Sowohl für E. fetida als auch C. floridanus soll untersucht werden, inwieweit sich diese Modell-MP-Partikel mit ihren unterschiedlichen physikalisch-chemischen Eigenschaften auf die Fitness der Modellorganismen auswirken, und zwar sowohl auf phänotypischer Ebene (Mortalitätsrate, Anzahl Nachkommen) als auch auf Transkriptom-, und Proteomebene untersucht werden, um sublethale Stress- oder Immunreaktionen charakterisieren zu können. Zudem sollen mögliche Effekte von MP auf die Aktivität und Diversität des Darmmikrobioms und der Bereitstellung mikrobiell produzierter Gärungsprodukte und anderer Metabolite für den Wirt untersucht werden, denn solche Veränderungen könnten den Wirt indirekt beeinflussen. Wir erwarten, dass die Wirkmechanismen und biologischen Effekte von den chemisch-physikalischen Eigenschaften sowie der Morphologie der MP-Partikel abhängen.

1 2 3 4 5