API src

Found 228 results.

Ozeanischer Einfluss auf den grönländischen 79°N Gletscher

Das Projekt "Ozeanischer Einfluss auf den grönländischen 79°N Gletscher" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut für Polar- und Meeresforschung, Fachbereich Klimawissenschaften, Sektion Physikalische Ozeanographie der Polarmeere durchgeführt. Die Wechselwirkung zwischen der Kryosphäre und dem Ozean bildet eine der Hauptursachen für lokale und globale Veränderungen des Meeresspiegels. Das Schmelzen des grönländischen Eisschildes trägt derzeit zu rund einem Drittel zum globalen Meeresspiegelanstieg bei, und der Massenverlust des Eisschildes und damit der Transport von Eis aus dem Eisschild in den Ozean beschleunigen sich weiter. Bis vor kurzem schien es, als sei die Beschleunigung der abfließenden Eisströme auf Grönlands Westküste und die Fjorde im Südosten beschränkt, während die Gletscher im Nordosten als weitgehend stabil galten. Einer dieser scheinbar stabilen Gletscher ist der Nioghalvfjerdsbrae oder 79°Nord Gletscher, der größere zweier Gletscher, die aus dem nordostgrönländischen Eisstrom gespeist werden und direkt ins Meer münden. Wegen der Existenz einer Kaverne unter der schwimmenden Eiszunge analog zu den Schelfeisen der Antarktis ist der 79°Nord Gletscher für Studien der Eis Ozean Wechselwirkung sehr interessant, besonders da das Einzugsgebiet des nordostgrönländischen Eisstroms mehr als 15% der Fläche des grönländischen Eisschildes erfasst. Aktuelle Studien weist nun auf eine Beschleunigung des Eisstromes und eine Abnahme der Eisdicke entlang der Küste von Nordostgrönland hin. Gleichzeitig wurde eine Erwärmung und eine Zunahme des Volumens des Atlantikwassers in der Ostgrönlandsee und der Framstraße beobachtet. Unser Projekt hat zum Ziel, (1) die Mechanismen zu verstehen, mit denen der Ozean Wärme aus der Framstraße und vom Kontinentalhang Nordostgrönlands in die Kaverne unter dem schwimmenden 79°N Gletscher transportiert, (2) die Rolle externer Variabilität relativ zu Prozessen innerhalb der Kaverne hinsichtlich ihres Einflusses auf das Schmelzen an der Eisunterseite zu untersuchen und (3) die wichtigsten Sensitivitäten innerhalb dieses gekoppelten Systems aus Eis und Ozean zu identifizieren. Wir verfolgen dieses Ziel durch eine Kombination von gezielter Beobachtung und innovativer hochauflösender Modellierung. Im Rahmen zweier Forschungsreisen mit dem Eisbrecher FS Polarstern werden Strömungsgeschwindigkeiten, Hydrographie und Mikrostruktur sowohl mit gefierten als auch mit verankerten Instrumenten gemessen. Diese Beobachtungen werden durch den Einsatz eines autonomen Unterwasserfahrzeugs ergänzt. Zur Modellierung nutzen wir das Finite Element Sea ice Ocean Model (FESOM), das um eine Schelfeiskomponente erweitert wurde und in einer Konfiguration betrieben wird, die mit hoher Auflösung die kleinskaligen Prozesse auf dem Kontinentalschelf vor Nordostgrönland und in der Kaverne unter dem 79°N Gletscher in einem globalen Kontext wiedergibt. Zusammen mit den Beiträgen unserer Kooperationspartner aus der Glaziologie und der Tracerozeanographie entwickelt sich aus der Synthese dieser beiden Komponenten ein detailliertes Bild der Prozesse auf dem Kontinentalschelf Nordostgrönlands, einer Schlüsselregion für zukünftige Veränderungen des globalen Meeresspiegels.

Mischungsprozesse in der Stratosphäre von kleinen zu globalen Skalen mit einem schnellen hochpräzisen QCL Spektrometer für N2O und CO auf HALO

Das Projekt "Mischungsprozesse in der Stratosphäre von kleinen zu globalen Skalen mit einem schnellen hochpräzisen QCL Spektrometer für N2O und CO auf HALO" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. Im Rahmen dieses Antrags werden neuartige hochaufgelöste Spurengasmessungen genutzt, um Mischungsprozesse auf verschiedenen Skalen zu untersuchen um:1)den Effekt der Tropopauseninversionsschicht auf Mischung und Austausch zu untersuchen 2) um den Zerfall von Filamenten zu untersuchen, die aus dem Monsumsystem stammen 3) um den Anteil von Luftmassen aus verschiedenen Quellregion zu quantifizieren, die die extratropische obere Troposphäre/ untere Stratosphäre (ExUTLS) beeinflussen. Zu diesem Zweck schlagen wir vor, der HALO Nutzlast ein neues Messinstrument hinzuzufügen. Dabei handelt es sich um ein Quantenkaskadenlaserabsorptionsspektrometer, das in der Lage ist, simultan CO und N2O mit einer Genauigkeit von 0.1 ppbv/Hz zu messen bei einer Messfrequenz von 3 Hz. Die hohe Präzision der Messungen erlaubt es, Mischungsprozesse mit beispielloser Genauigkeit zu vermessen und Mischung zwischen Luftmassen innerhalb der Stratosphäre zu identifizieren. Damit sollen die Mischungsprozesse, die beim Zerfall von monsunbeeinflussten Filamenten zu einem Spurenstoffaustauch innerhalb der Stratosphäre führen, untersucht werden. Neben den kleinskaligen Prozessen werden auch die großräumigen Verteilungen der Spurenstoffe untersucht. Hierzu sollen CLaMS Trajektorien und ein CO-basierter Budgetansatz kombiniert werden, um Luftmassenanteile aus verschiedenen Ursprungsregionen, die die Zusammensetzung der ExUTLS zur Monsunzeit bestimmen, zu quantifizieren. Dieser Ansatz soll auf die HALO Messungen bei POLSTRCC angewendet werden, um ein komplementäres Bild zur Winterjahreszeit zu erhalten und die Daten in einen jahreszeitlichen Kontext zu setzen.

Sedimentbewegungen in der Deutschen Bucht

Das Projekt "Sedimentbewegungen in der Deutschen Bucht" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Wasserbau durchgeführt. Zur Halbzeit eines BAW-Forschungsprojektes zum 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht' werden erste Ergebnisse sichtbar. Transportprozesse im Wandel der Zeitläufe: Wie werden sich die Watten und Vorländer der deutschen Nordseeküste anpassen, sollte in Folge des Klimawandels der Meeresspiegel steigen? Eine Antwort auf diese Frage ist nicht nur für die Sicherheit der Seedeiche bedeutsam, sondern auch für die Zufahrten zu den Seehäfen. Einerseits beeinflusst das Flachwasser im Ästuarbereich maßgebend das Tide- und Sedimentregime in den Tideflüssen und hat somit Auswirkungen auf die zukünftige Unterhaltung der Seehafenzufahrten. Zum anderen hat sich gezeigt, dass in einer Betrachtung über Jahrzehnte hinweg die kleinräumigen Transportprozesse in der Deutschen Bucht und in den Außenbereichen der Ästuare auch durch die Transportprozesse, die in der gesamten Nordsee stattfinden, mitgeprägt werden. Die Dimension dieser weiträumigen Transportprozesse in der Nordsee wird in der Satellitenaufnahme der oberflächennahen Ausbreitung der Schwebstofffahnen aus den Ästuarmündungen deutlich (Bild 1). Allerdings entzieht sich dieses Phänomen noch weitgehend der fachwissenschaftlichen Betrachtung, denn über die tatsächlichen Transportprozesse in der Nordsee, zumal in der Deutschen Bucht, ist wenig bekannt: Es fehlen zum Beispiel grundlegende, flächendeckende Informationen über das anstehende Material an der Gewässersohle, über den Bodenaufbau oder über die relevanten Kräfte, die den Transport antreiben, wie Wind und Seegang. Und schließlich fehlen die geeigneten Werkzeuge, um die komplexen Transportprozesse berechnen zu können. BAW hat Federführung bei Forschungsprojekt: Im Rahmen eines im Wettbewerb ausgeschriebenen Forschungsschwerpunktes des Kuratoriums für Forschung im Küsteningenieurwesen (KFKI) konnte sich die BAW mit einem Forschungsantrag zum Thema 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der deutschen Bucht (AUFMOD)' durchsetzen. An dem Projekt unter Federführung der BAW beteiligen sich weitere neun Kooperationspartner. Gestartet Ende 2009, läuft die Förderung zunächst bis 2012 (siehe: www.kfki.de/prj-aufmod/de).

The role of salps for carbon export in Southern Ocean - Does surface phytoplankton distribution reflect salp export potential?

Das Projekt "The role of salps for carbon export in Southern Ocean - Does surface phytoplankton distribution reflect salp export potential?" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt.

DECOR: Der Einfluss der Dynamik auf die Zusammensetzung und den Transport von klimarelevanten Spurenstoffen in der extratropischen oberen Troposphäre und unteren Stratosphäre

Das Projekt "DECOR: Der Einfluss der Dynamik auf die Zusammensetzung und den Transport von klimarelevanten Spurenstoffen in der extratropischen oberen Troposphäre und unteren Stratosphäre" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) durchgeführt. Die Quantifizierung der Effekte von Transport, Mischung und chemischer Prozessierung von klimarelevanten Spurengasen in der extratropischen oberen Troposphäre und unteren Stratosphäre (UTLS) ist von großer Bedeutung für das Verständnis des Strahlungsbudgets der Atmosphäre. Dynamische Systeme wie der Jetstream, der Asiatische Monsun, Schwere- und Rossbywellen verändern die Verteilung und den Transport von Spurenstoffen in der UTLS und beeinflussen dadurch das Klima. Ziel des Projektes ist es die Veränderung der Zusammensetzung und des Transports in der UTLS durch diese dynamischen Systeme zu untersuchen. Ein spezifischer Fokus liegt hierbei auf den Spurengasen H2O, O3, Stickoxid- und Halogenverbindungen sowie Zirren. Zu diesem Zweck wird das Atmosphärische chemische Ionisations-Massenspektrometer AIMS und das durchstimmbare Diodenlaser Hygrometer WARAN bei WISE eingesetzt. Erfolgreiche erste Messungen wurden bereits während der Kampagnen TACTS/ESMVal, ML-CIRRUS und POLSTRACC/GW-Cycle/SALSA durchgeführt. Der Nachweis mit dem Reagenzien SF5- wurde bislang zur Messung der Spurengase HCl, HNO3, SO2 und HONO verwendet. In diesem Projekt schlagen wir den quantitativen Nachweis von ClONO2 und HBr mit AIMS als Weiterentwicklung vor. Im Rahmen der WISE Mission liegt der Fokus auf der quantitativen Bestimmung der Beiträge von stratosphärischem O3 und HNO3 in der UTLS abgeleitet aus dem stratosphärischen Tracer HCl. Transportprozesse und ihr Einfluss auf die Inversionsschicht der Tropopause (TIL) werden in Abhängigkeit von Breite und dynamischer Situation untersucht . Tracer-Tracer Korrelationen in der extratropischen Tropopausen Schicht werden eingesetzt um den Mischungszustand in und oberhalb dieser Schicht zu charakterisieren. Unsere in-situ Messungen werden zur Validierung der Fernerkundungsinstrumente GLORIA (HNO3, ClONO2, H2O und SO2), DOAS (HONO, Bry) und WALES (H2O) herangezogen. Der Einfluss von Eiswolken und kaltem Aerosol auf die Spurengaszusammen in der polaren UTLS wird mit Daten der Mission POLSTRACC bestimmt. Die Aufnahme von HNO3 in Eis und die Bildung von kondensierten Salpetersäure/Wasser Kondensaten ist bei tiefen Temperaturen unzureichend verstanden. Diese Fragestellungen werden aus Messungen von Wasser, gasförmiger HNO3 und HNO3 in Eispartikeln beantwortet. Tracer-tracer Korrelationen der Chlor- und Stickoxidverbindungen werden benutzt um die Verteilung von Chloraktivierung und De- und Nitrifizierung zu bestimmen. Unsere Messungen dienen dazu das Verständnis des Einflusses dynamischer und heterogener chemischer Prozesse auf die Verteilung klimarelevanter Spurengase in der UTLS zu verbessern.

Teilprojekt C02: Transport und Ablagerung: Evolution alluvialer Fächer zwischen 21°S und 25°S im Wechselspiel klimatischer und tektonischer Kräfte

Das Projekt "Teilprojekt C02: Transport und Ablagerung: Evolution alluvialer Fächer zwischen 21°S und 25°S im Wechselspiel klimatischer und tektonischer Kräfte" wird vom Umweltbundesamt gefördert und von Universität Köln, Fachgruppe Geowissenschaften, Geographisches Institut durchgeführt. Dieses Projekt konzentriert sich auf die lateral umfassende (21ºS bis 25°S) Aufzeichnung des fluvialen Transports und der Ablagerung entlang der Küste, die als Schwemmkegel in der schmalen Küstenebene erhalten sind. Ziel ist es, den langfristigen küstenparallelen Klimagradienten und zeitliche Schwankungen der Transportvorgänge aus den Quellgebieten in der Küstenkordillere und Ablagerungsraten abzuleiten. Der Zeitbereich dieses Projekts ist das Quartär, eingeschränkt vom maximalen Alter der schmalen Küstenebene. Schwerpunkte sind die Sedimentologie und Chronologie der Küstenschwemmkegel. Chronologische Informationen werden durch Lumineszenzdatierung von feinkörnigen Sedimenten und Bedeckungsaltersdatierungen von Grobsedimenten, mittels kosmogenen Nukliden, gewonnen.

Messungen mit mini-DOAS Instrument während der HALO Phase II Missionen WISE, CAFE, EmerGe, and CoMet und Auswertung, Interpretation und Publikation der während früheren HALO Missionen gewonnenen Meßdaten

Das Projekt "Messungen mit mini-DOAS Instrument während der HALO Phase II Missionen WISE, CAFE, EmerGe, and CoMet und Auswertung, Interpretation und Publikation der während früheren HALO Missionen gewonnenen Meßdaten" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Mit dem vorliegenden Antrag sollen 2 Hauptziele verfolgt werden. Einerseits wird die Teilnahme des mini-DOAS Instruments an den, für die Mitte 2016 bis Mitte 2019 geplanten HALO Missionen WISE, CAFE, EmerGe, and CoMet beantragt, und andererseits sollen die mit dem Instrument bei früheren Missionen (TACTS/ESMVal, NarVal, Cirrus, Acridicon und OMO) gemessenen Daten und jener aus in Zukunft stattfindenden HALO Missionen bzgl. dreier wissenschaftlicher Hauptziele im Detail ausgewertet, interpretiert und publiziert werden. Die 3 wissenschaftlichen Hauptziele sind: 1. die Untersuchung der Quellen und Senken und die Photochemie der NOx und NOy Verbindungen in der Troposphäre und unteren Stratosphäre (UTLS) für unterschiedliche photochemische Regime (u.a. Reinluft und durch diverse NOx Quellen verschmutzte Luft), wobei hier das mini-DOAS Instrument mit den Messungen von NO2, (und evt. HONO) zusammen mit den Messungen anderer Instrumenten (z.B. AENEAS, AIMS, ..) zum Gesamtbudget von NOy beiträgt, 2. die Bedeutung der volatiler organischer Verbindungen für die atmosphärische Oxidationskapazität in reiner und verschmutzter Luft durch Messungen von CH2O (und C2H2O2) mit dem mini-DOAS Instrument, die die Schließung des Oxidationsmechanismus VOC größer als oder gleich CH2O größer als oder gleich CO erlauben. 3. Messungen zum Budget und zur Photochemie von Brom in der UTLS, wobei hier das Instrument besonders mit seinen Messungen von BrO zum anorganischen Brombudget beiträgt, das zusammen mit den Messungen der organischen Bromverbindungen (der Universität Frankfurt) das Gesamtbudget an Brom schließt. Alle diese Untersuchungen sollen auch zur Überprüfung der Vorhersagen globaler Chemietransportmodelle (CTMs) (EMAC, CLAMS, TOMCAT/SLIMCAT, ...) dienen.

Messungen stabiler Isotopenverhältnisse in flüchtigen organischen Verbindungen im Ausfluss von Ballungszentren. Dieser Antrag ist ein Beitrag zu den HALO-Missionen EMeRGe-EU und EMeRGe-ASIA

Das Projekt "Messungen stabiler Isotopenverhältnisse in flüchtigen organischen Verbindungen im Ausfluss von Ballungszentren. Dieser Antrag ist ein Beitrag zu den HALO-Missionen EMeRGe-EU und EMeRGe-ASIA" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Physik durchgeführt. Die Auswirkungen von flüchtigen organischen Verbindungen (VOC) auf die Luftqualität und damit auf die Gesundheit der Menschen auf lokaler oder regionaler Skala sind direkt offenkundig durch die schädlichen Effekte auf die Lebenswelt. Noch bedeutender ist die kritische Rolle, die VOC in chemischen Prozessen der Atmosphäre einnehmen. Die Bildung vieler sekundärer organischer Schadstoffe in der Atmosphäre wie Ozon, Peroxide, Aldehyde, Peroxyacetylnitrate und sekundäre organische Aerosole hängt entscheidend von der Verfügbarkeit der VOC und ihrer Vorläufersubstanzen ab. Wir planen die Messung von Isotopenverhältnissen und Konzentrationen spezifischer VOC in der Abluft großer Ballungszentren (MPC) in Europa und Asien durch Einsatz des Luftprobensammlers MIRAH auf den HALO-Missionen EMeRGe-EU und EMeRGe-Asia. Die Luftproben werden im Labor mittels Gaschromatographie-Verbrennungs-Isotopen-Massenspektrometrie analysiert. Isotopenverhältnisse in VOC sind wertvolle Indikatoren zur Untersuchung von Reaktionen, die derzeitigen Messverfahren nicht direkt zugänglich sind. Transport- und Mischungsprozesse in der Atmosphäre können damit visualisiert werden, wertvolle Information über dominante Prozesse, an denen VOC beteiligt sind, gewonnen werden. Bereits in den letzten HALO-Missionen, TACTS/ESMVal und den beiden OMO-Missionen, konnten wir zeigen, dass die beantragte Messmethode ein sensitives Werkzeug ist, z.B. für Quellstudien von VOC, zur Ableitung von Transportwegen und deren Einfluss auf die Verteilung der VOC, zur Abschätzung des Mischungsgrads, der Unterscheidung zwischen dynamischen und chemischen Prozessen, als auch zur Untersuchung atmosphärischer Umwandlung und Verweilzeit spezifischer VOC. Die Wertstellung dieser Ergebnisse wird sogar noch gesteigert durch den Vergleich mit Ergebnissen aus 3-dimensionalen Chemie-Transport-Modellen. Die folgenden geplanten wissenschaftlichen Zielsetzungen betten sich in die übergreifenden Ziele von EMeRGe-EU and EMeRGe-ASIA: (1) Messung der Zusammensetzung der in Europa und Asien entspringenden Schadstofffahnen und Bestimmung des Beitrags bestimmter VOC an der Zusammensetzung der Atmosphäre; (2) Bestimmung der weitreichenden Luftverschmutzung sowie deren Einfluss auf die Verteilung bestimmter VOC; (3) Identifizierung möglicher Unterschiede im Transport und der Umwandlung von VOC, die mit besonderen einzigartigen Charakteristiken europäischer und asiatischer MPCs verbunden sind; (4) Identifizierung von Oxidations- und Zwischenprodukten des VOC-Abbaus; (5) Informationsgewinnung über Oxidationswege durch Messung von Vorläufer- und Oxidationsprodukten; (6) Altersbestimmung von Luftmassen in unterschiedlichen Stadien der Schadstofffahnen; (7) Gegenüberstellung photochemischer Prozessierung gegen Transport und Mischung; (8) Verbindung der Informationen aus Isotopenverhältnissen mit bestimmten regionalen meteorologischen Daten; (9) Bereitstellung der Messdaten für Chemietransportmodelle.

Biogeochemical modelling of biosphere-atmosphere-hydrosphere interactions

Das Projekt "Biogeochemical modelling of biosphere-atmosphere-hydrosphere interactions" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU) durchgeführt. This project aims at the improvement and testing of a modeling tool which will allow the simulation of impacts of on-going and projected changes in land use/ management on the dynamic exchange of C and N components between diversifying rice cropping systems and the atmosphere and hydrosphere. Model development is based on the modeling framework MOBILE-DNDC. Improvements of the soil biogeochemical submodule will be based on ICON data as well as on results from published studies. To improve simulation of rice growth the model ORYZA will be integrated and tested with own measurements of crop biomass development and transpiration. Model development will be continuously accompanied by uncertainty assessment of parameters. Due to the importance of soil hydrology and lateral transport of water and nutrients for exchange processes we will couple MOBILE-DNDC with the regional hydrological model CMF (SP7). The new framework will be used at field scale to demonstrate proof of concept and to study the importance of lateral transport for expectable small-scale spatial variability of crop production, soil C/N stocks and GHG fluxes. Further application of the coupled model, including scenarios of land use/ land management and climate at a wider regional scale, are scheduled for Phase II of ICON.

Teilprojekt A03: Äolischer Transport: Statistisch-dynamische Modellierung äolischer Prozesse in der Atacama Wüste über geologische Zeitskalen und deren Bedeutung für das Leben in extrem wasserlimitierten Gebieten

Das Projekt "Teilprojekt A03: Äolischer Transport: Statistisch-dynamische Modellierung äolischer Prozesse in der Atacama Wüste über geologische Zeitskalen und deren Bedeutung für das Leben in extrem wasserlimitierten Gebieten" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geophysik und Meteorologie, Bereich Meteorologie, Arbeitsgruppe Atmosphärische Modellierung durchgeführt. Ein wesentlicher Aspekt dieses Projektes ist es, eine verbesserte Darstellung von Bodenkrusten (biotisch uns abiotisch) in Modellen für äolische Erosion und Transportprozesse zu entwickeln. Ziel ist es, die langfristige Wechselwirkung zwischen äolischen, biologischen und Bodenbildungs-Prozessen, beeinflusst von atmosphärischen Parametern wie z.B. Luftfeuchtigkeit, in der Atacama Wüste zu untersuchen. Es besteht ein starker Bezug zu biologischen, boden- und materialkundlichen Teilprojekten des SFB.

1 2 3 4 521 22 23