Ein Wasserwerk ist eine Anlage zur Aufbereitung und Bereitstellung von Trinkwasser. Wesentliche Bestandteile sind unter anderem Filter, Pumpen und oft auch ein Wasserspeicher bzw. Wasserbehälter. Dazu kommen Hochbehälter, Armaturen und Schalträume, wo die Verteilung des Trinkwassers in das Leitungsnetz gesteuert und überwacht wird. In größeren Wasserwerken werden auch Laboratorien betrieben, die die chemische und biologische Zusammensetzung des Wassers kontrollieren. Erfolgt die Wasserversorgung aus dem Grundwasser, befindet sich das Wasserwerk meist direkt bei den Brunnen. Das Gelände ist meist als Zone I eines Trinkwasserschutzgebietes ausgewiesen. Auch Grundwasseranreicherungsanlagen, welche zusätzliches Fließwasser aus Flüssen oder Bächen in das Grundwasser einbringen (Uferfiltration), sind häufig Bestandteil eines solchen Wasserwerks.
Rückstände aus der Trinkwasseraufbereitung Bei der Trinkwasseraufbereitung können zuvor im Rohwasser gelöste Radionuklide ungewollt in Aufbereitungsrückständen angereichert werden. Rückstände mit erhöhtem Radionuklidgehalt entstehen im Wesentlichen bei zwei der gängigen Aufbereitungsverfahren: Bei der "Entmanganung und Enteisenung" sowie bei der "Entsäuerung". Für Spülschlämme aus der Mangan- beziehungsweise Eisenentfernung sowie aus der Entsäuerung ist eine unzulässig hohe Strahlenexposition bei den derzeit praktizierten Verwertungs- und Deponierungsmethoden auch bei hohen Radionuklidgehalten nicht zu erwarten. Eisenschlämme aus der Trinkwasseraufbereitung Quelle: © Bayerisches Landesamt für Umwelt Bei der Trinkwasseraufbereitung können zuvor im Rohwasser gelöste Radionuklide ungewollt in Aufbereitungsrückständen angereichert werden. Je nach Aufbereitungsverfahren und Zusammensetzung des Rohwassers können Rückstände entstehen, deren Radionuklidgehalt ( spezifische Aktivität ) den natürlichen Hintergrundgehalt von Böden und Gesteinen um ein Vielfaches übersteigt. Rückstände mit einem erhöhten Gehalt natürlicher Radionuklide entstehen im Wesentlichen bei einigen Aufbereitungsverfahren zur Nutzung von Grundwasser zu Trinkwasserzwecken. Rückstandsart und spezifische Aktivität Grundwasser muss häufig erst aufbereitet werden, bevor es als Trinkwasser verwendbar ist. Entfernung von Mangan und Eisen, Entsäuerung Rückstände mit erhöhtem Radionuklidgehalt entstehen im Wesentlichen bei zwei der gängigen Aufbereitungsverfahren: Die beschriebenen Verfahren können auch in Kombination angewendet werden. In den Spülschlämmen treten dementsprechend die Nuklide Radium-226, Radium-228 und Blei-210 auf. Die spezifische Aktivität dieser Nuklide in Spülschlämmen beträgt, soweit bekannt, weniger als 0,5 bis 10 Becquerel pro Gramm, in Ausnahmefällen bis 20 Becquerel pro Gramm. Entfernung von Uran Bisher wenig verbreitet ist die gezielte Entfernung von Uran . In einigen wenigen Wasserwerken liegen die Uran -Konzentrationen oberhalb des Grenzwertes der Trinkwasserverordnung von 10 Mikrogramm pro Liter. Um diesen Grenzwert einhalten zu können, werden spezielle Absorberharze (Austauscherharze) eingesetzt. Nach Gebrauch sind diese mit Uran belegt und können für Uran -238 beziehungsweise Uran -234 spezifische Aktivitäten von mehreren 100 Becquerel pro Gramm aufweisen. Beseitigung der Rückstände Nach abfallrechtlichen Vorgaben hat die Verwertung von Rückständen Vorrang gegenüber einer Deponierung. Bisher wurde etwa ein Drittel der Rückspülschlämme deponiert, der überwiegende Teil dagegen wieder verwertet. Je nach chemischer Zusammensetzung ist es nach den technischen Regeln aus dem Merkblatt W-221-3 des Deutschen Vereins des Gas- und Wasserfaches (DVGW) möglich, die Rückstände in der Zement- und Ziegelindustrie, bei der Herstellung von Pflanzgranulat, im Straßen- und Wegebau, als Fällungsmittel in Abwasseranlagen sowie in der Land- und Forstwirtschaft (hier nur die Entsäuerungsschlämme) wieder zu verwerten. Die Wasserversorger setzten dies in der Vergangenheit auch um. Filterkiese Absorberharze (Austauscherharze) Filterkiese Filterkiese Filterkiese bleiben über mehrere Jahre bis Jahrzehnte im Wasserwerk im Einsatz. Ein Austausch erfolgt in der Regel nur bei Sanierungsarbeiten im Wasserwerk. Informationen zur Menge der verwerteten oder deponierten Rückstände sind nicht veröffentlicht und liegen auch dem DVGW nicht vor. Von Einzelfällen ist bekannt, dass die Kiese zur Inbetriebnahme neuer Filteranlagen in anderen Wasserwerken oder im Straßenbau eingesetzt wurden. Absorberharze (Austauscherharze) Absorberharze (Austauscherharze) Aktuell werden Absorberharze (Austauscherharze) üblicherweise regeneriert, indem man das Uran chemisch von den Absorberharzen entfernt. Die Harze können dann erneut bei der Trinkwasseraufbereitung eingesetzt werden. Absorberharze könnten zwar in herkömmlichen Müllverbrennungsanlagen thermisch verwertet werden, allerdings spricht der hohe Urangehalt dagegen. Die Deponierung der Absorberharze auf Deponien der Klasse 0 bis 3 ist aufgrund des hohen Brennwertes nicht möglich. Die Harze können deshalb nur untertage oder in Sondermüll-Verbrennungsanlagen beseitigt werden. Bei niedrigeren Urangehalten ist eine thermische Verwertung in konventionellen Müllverbrennungsanlagen leichter umsetzbar. Als Ausweg bietet sich die teilweise Belegung, das heißt eine kürzere Nutzung der Absorberharze, an. Strahlenexposition Für Spülschlämme aus der Mangan- beziehungsweise Eisenentfernung sowie aus der Entsäuerung liegen umfangreiche Daten zum Radionuklidgehalt sowie teilweise auch zur Verwertung beziehungsweise Beseitigung vor. Eine unzulässig hohe Strahlenexposition ist bei den derzeit praktizierten Verwertungs- und Deponierungsmethoden auch bei hohen Radionuklidgehalten nicht zu erwarten. Für Filterkiese und Absorberharze liegen nur wenige Informationen zur Menge, zum Radionuklidgehalt und zur Beseitigungspraxis vor. Filterkiese werden zwar nur selten ausgetauscht, beim Wechsel können jedoch mehrere Hundert Tonnen Rückstände anfallen. Beim Austausch von Filterkiesen mit hohen spezifischen Aktivitäten kann nach Einschätzung des BfS eine Überschreitung des Dosisrichtwertes von 1 Millisievert pro Jahr in Einzelfällen nicht ausgeschlossen werden. Stand: 20.03.2025
Der zweite Unternehmensbesuch, der im Rahmen des 25-jährigen Jubiläums der Umweltallianz Sachsen-Anhalt bei den Erstmitgliedern des Bündnisses durchgeführt wurde, fand am 21.03.2024 bei der MOL Katalysatortechnik GmbH in Merseburg statt. Das Unternehmen aus dem Saalekreis sorgt mit innovativen Produkten einerseits in vielen Regionen weltweit für ressourcenschonende Wasserbehandlung. Andererseits setzt die MOL Katalysatortechnik GmbH auch im eigenen Betrieb auf Nachhaltigkeit. Seit dem Jahr 2000 ist das Unternehmen Mitglied der Umweltallianz und erbringt seitdem freiwillige Umweltschutzleistungen, die über die gesetzlichen Vorgaben hinausgehen. Um den Kraftstoffverbrauch und die CO 2 -Emissionen zu senken, wird der Fuhrpark aktuell auf Hybridfahrzeuge umgerüstet. Die 1995 gegründete MOL Katalysatortechnik GmbH ist spezialisiert auf hauchdünne, langlebige Katalysatoren aus Nickel-Eisen-Chrom-Legierungen. Diese kommen bei der Behandlung sowohl von Prozess- oder Kühlwasser in der Industrie als auch von Trinkwasser oder in Schwimmbädern zum Einsatz. Dadurch werden Ablagerungen und Biofilme im Wasser reduziert, was wiederum den Einsatz von Bioziden und Chemikalien verringert. Die nachhaltige Technologie wurde bereits mehrfach mit Preisen gewürdigt; zuletzt kam MOL bei den in London verliehenen „World Sustainability Awards“ im Jahr 2021 unter die weltweit fünf besten Unternehmen für nachhaltige Technologie. Hinzu kommen etwa die Auszeichnung mit dem „Preis der Umweltallianz 2014“ und ein dritter Platz bei dem vom Wissenschaftsministerium vergebenen „Hugo-Junkers-Preis für Forschung und Innovation“ im Jahr 2015. Neben Staatssekretär Dr. Steffen Eichner haben Vertreter der Umweltallianz sowie des Verbandes der Chemischen Industrie e.V. das Unternehmen besucht. Staatssekretär Eichner betonte: „MOL ist ein starkes Aushängeschild für Nachhaltigkeit und Umweltschutz ‚made in Sachsen-Anhalt‘. Die innovative Katalysatortechnologie reduziert den Einsatz von Bioziden sowie Chemikalien bei der Wasserbehandlung und setzt damit weltweit Standards.“ Nach einer Besichtigung des Labors und des Produktionsraums stellten die beiden Geschäftsführer, Herr Dr. Koppe und Herr Linck, das Unternehmen und seine vielfältigen Produkte vor. Zum Abschluss erfolgte gemeinsam mit Partnerfirmen der MOL Katalysatortechnik GmbH ein Austausch über ökologische Technologien.
Gegenstand des vorliegenden Planänderungsantrags ist die Änderung der Erschließung des Inselhafens mit Trinkwasser und Abwasser. In diesem Zusammenhang wird auch eine Änderung der Leitungsführung für die Medienerschließung insbesondere des erforderlichen Mittelspannungsanschlusses beantragt. Die gegenständliche Änderung umfasst konkret folgende Sachverhalte: • Dezentrale Versorgung des Inselhafens mit Trinkwasser durch die Entnahme und Aufbereitung von Ostseewasser durch eine Umkehrosmoseanlage inkl. der Direkteinleitung des im Zuge der Trinkwasseraufbereitung entstehenden Konzentrats in die Ostsee. • Dezentrale Abwasseraufbereitung der im Inselhafen anfallenden häuslichen Abwässer durch eine vollbiologische Membrankläranlage mit Direkteinleitung des gereinigten Abwassers in die Ostsee. • Entfall der landseitig vorgesehenen Leitungsanbindung an das öffentliche Trink- /Abwassernetz sowie Entfall des landseitig geplanten Versorgungsgebäudes. • Verlegung des landseitigen Anschlusspunktes für den Mittelspannungsanschluss und Nutzung der Seebrücke für die Verlegung der Mittelspannungsleitung.
Gewässer in Europa: Es gibt viel zu tun Die Europäische Union wird das in der Wasserrahmenrichtlinie festgelegte Ziel, ihre Gewässer bis spätestens 2027 in einen guten Zustand zu versetzen, nicht erreichen. Dies zeigt ein Bericht der Europäischen Umweltagentur (EEA) mit Beteiligung des UBA. Basierend auf der umfangreichsten Datengrundlage zu Europas Gewässern unterstreicht der Bericht die dringende Notwendigkeit zum schnelleren Handeln. Bedrohung der Artenvielfalt Nur 37 Prozent der europäischen Flüsse, Seen und Küstengewässer werden derzeit als ökologisch intakt bewertet – eine Zahl, die sich seit 2015 kaum verändert hat. Deutschland liegt mit neun Prozent weit unter dem europäischen Mittel. Grund hierfür sind zu hohe Nähr- und Schadstoffeinträge aus Landwirtschaft, Kläranlagen und Industrie und massive Eingriffe durch Begradigungen, Uferverbau und -befestigungen und die Vielzahl an Querbauwerken (Wehre, Schleusen, Wasserkraftwerke) in den Gewässern. Dadurch fehlen vielen Tier- und Pflanzenarten ihre natürlichen Lebensräume. Allgegenwärtige Chemikalienverschmutzung Lediglich 29 Prozent der europäischen Oberflächengewässer und 77 Prozent des Grundwassers erreichen einen guten chemischen Zustand. Problematisch bleiben vor allem Pestizide aus der Landwirtschaft, Quecksilber aus der Kohleverbrennung und andere Chemikalien aus verschiedenen Quellen. In Deutschland erreicht derzeit kein Oberflächengewässer einen guten chemischen Zustand. Hiermit stehen wir nicht alleine da: Auch in Schweden gelten alle Gewässer als chemisch belastet. Besser sieht es beim Grundwasser aus: 67 Prozent der Grundwasserkörper in Deutschland sind in einem guten chemischen Zustand. Doch auch das ist nicht ausreichend, denn so kann das Wasser nicht ohne Aufbereitung als Trinkwasser genutzt werden. Klimawandel und Extremwetter bedrohen die Wassersicherheit Trotz eines mengenmäßig guten Zustands von 91 Prozent des Grundwassers in Europa sind bereits 30 Prozent der europäischen Bevölkerung von Wasserknappheit betroffen. Extremwetterereignisse wie Dürren und Überschwemmungen verursachen Schäden in Milliardenhöhe, wie die europaweite Trockenheit 2022 und das Hochwasser 2021 in Deutschland, Belgien und den Niederlanden zeigen. Diese Extremereignisse nehmen durch den Klimawandel weiter zu und gefährden die Wasserversorgung in Europa. Auch in Deutschland steigt der Nutzungsdruck von Wasser vor dem Hintergrund des Klimawandels. Wassermenge und Wasserqualität sind daher in den Fokus zu stellen. Hierbei unterstützt die Nationale Wasserstrategie mit zahlreichen Aktionen zum Schutz der Ressource. Landwirtschaft als Hauptverursacher der Belastung Der größte Belastungsfaktor für Europas Gewässer ist die Landwirtschaft, die nicht nur den höchsten Wasserverbrauch aufweist, sondern auch durch Nährstoffe und Pestizide zur Verschmutzung beiträgt. Weitere Belastungen kommen aus der Energieerzeugung, der Stadtentwicklung, dem Hochwasserschutz und den Kläranlagen. Die Landwirtschaft spielt auch in Deutschland eine erhebliche Rolle für die Gewässer. Bei 77 Prozent der Oberflächengewässer und 29 Prozent des Grundwassers ist sie Ursache für die Zielverfehlung eines guten Zustands. Handlungsbedarf in Europa und Deutschland Der Handlungsbedarf in Europa und Deutschland ist hoch. Maßnahmen müssen noch viel stringenter und schneller umgesetzt werden, um das Ziel eines guten Gewässerzustands zu erreichen: weniger Wasserverbrauch, reduzierte Schad- und Nährstoffeinträge sowie ein naturnaher Wasserhaushalt. Für Bäche, Flüsse und Auen ist mehr Raum erforderlich, um Hochwasser zu verteilen, Tieren und Pflanzen Lebensräume bereitzustellen und Wasser für Trockenperioden zu speichern. Diese und eine Vielzahl weiterer effektiver Maßnahmen sind notwendig, um den Zustand der Gewässer in Europa langfristig zu verbessern und ihre Resilienz gegen die Vielzahl von Belastungen zu erhöhen.
Wassernutzung privater Haushalte Im Schnitt nutzt jede Person in Deutschland täglich 126 Liter Trinkwasser im Haushalt. Für die Herstellung von Lebensmitteln, Bekleidung und anderen Bedarfsgütern wird dagegen so viel Wasser verwendet, dass es 7.200 Litern pro Person und Tag entspricht. Ein Großteil dieses indirekt genutzten Wassers wird für die Bewässerung von Obst, Gemüse, Nüssen, Getreide und Baumwolle benötigt. Direkte und indirekte Wassernutzung Jede Person in Deutschland verwendete im Jahr 2022 im Schnitt täglich 126 Liter Trinkwasser , etwa für Körperpflege, Kochen, Trinken, Wäschewaschen oder auch das Putzen (siehe Abb. „Trinkwasserverwendung im Haushalt 2023“). Darin ist auch die Verwendung von Trinkwasser im Kleingewerbe zum Beispiel in Metzgereien, Bäckereien und Arztpraxen enthalten. Der überwiegende Anteil des im Haushalt genutzten Trinkwassers wird für Reinigung, Körperpflege und Toilettenspülung verwendet. Nur geringe Anteile nutzen wir tatsächlich zum Trinken und für die Zubereitung von Lebensmitteln. Die tägliche Trinkwassernutzung im Haushalt und Kleingewerbe ging von 144 Liter pro Kopf und Tag im Jahr 1991 lange Jahre zurück bis auf täglich 123 Liter pro Kopf im Jahr 2016. 2019 wurden von im Schnitt täglich 128 Liter pro Person verbraucht, 2022 waren es 126 Liter. Der Anstieg im Vergleich zu 2016 begründet sich durch den höheren Wasserbedarf in den jeweils heißen und trockenen Sommermonaten (siehe Abb. „Tägliche Wasserverwendung pro Kopf“). Doch wir nutzen Wasser nicht nur direkt als Trinkwasser. In Lebensmitteln, Kleidungstücken und anderen Produkten ist indirekt Wasser enthalten, das für ihre industrielle Herstellung eingesetzt wurde oder für die Bewässerung während der landwirtschaftlichen Erzeugung. Dieses Wasser wird als virtuelles Wasser bezeichnet. Virtuelles Wasser zeigt an, wie viel Wasser für die Herstellung von Produkten benötigt wurde. Deutschlands Wasserfußabdruck Das virtuelle Wasser ist Teil des „Wasserfußabdrucks“ , der die direkt und indirekt verbrauchte Wassermenge einer Person, eines Unternehmens oder Landes angibt. Das Besondere des Konzepts ist, dass die Wassermenge, die in den Herstellungsregionen für die Produktion eingesetzt, verdunstet oder verschmutzt wird, mit dem Konsum dieser Waren im In- und Ausland in Verbindung gebracht wird. Der Wasserfußabdruck macht deutlich, dass sich unser Konsum auf die Wasserressourcen weltweit auswirkt. Der durch Konsum verursachte, kurz konsuminduzierte Wasserfußabdruck eines Landes, wird auf folgende Weise berechnet; in den Klammern werden die Werte des Jahres 2021 für Deutschland in Milliarden Kubikmetern (Mrd. m³) ausgewiesen: Nutzung heimischer Wasservorkommen – Export virtuellen Wassers (= 30,66 Mrd. m³) + Import virtuellen Wassers (188,34 Mrd. m³) = konsuminduzierter Wasserfußabdruck (219 Mrd. m³) Bei einem Wasserfußabdruck von 219 Milliarden Kubikmetern hinterlässt jede Person in Deutschland durch ihren Konsum einen Wasserfußabdruck von rund 2.628 Kubikmetern jährlich – das sind 7,2 Kubikmeter oder 7.200 Liter täglich. 86 % des Wassers, das man für die Herstellung der in Deutschland konsumierten Waren benötigt, wird im Ausland verbraucht. Für Kleidung sind es sogar nahezu 100 %. Grünes, blaues und graues Wasser Beim Wasserfußabdruck wird zwischen „grünem“, „blauem“ und „grauem“ Wasser unterschieden. Als „grün“ gilt natürlich vorkommendes Boden- und Regenwasser, welches Pflanzen aufnehmen und verdunsten. Als „blau“ wird Wasser bezeichnet, das aus Grund- und Oberflächengewässern entnommen wird, um Produkte wie Textilien herzustellen oder Felder und Plantagen zu bewässern. Vor allem Agrarprodukte haben einen großen Anteil am blauen Wasserfußabdruck von Deutschland (siehe Abb. „Sektoren mit den höchsten Beiträgen blauen Wassers zum Wasserfußabdruck von Deutschland“). Der graue Wasserfußabdruck veranschaulicht die Verunreinigung von Süßwasser durch die Herstellung eines Produkts. Er ist definiert als die Menge an Süßwasser, die erforderlich ist, um Gewässerverunreinigungen so weit zu verdünnen, dass die Wasserqualität die gesetzlichen oder vereinbarten Anforderungen einhält. Bei den nach Deutschland eingeführten Agrarrohstoffen und Baumwollerzeugnissen sind die Anteile an grünem, blauem und grauem Wasser auch bei gleichen Produkten je nach Herkunft unterschiedlich hoch: Für ein Kilogramm Kartoffeln aus Deutschland werden 119 Liter Wasser benötigt. Davon ist mit 84 Litern der größte Teil grünes Wasser. Für die gleiche Menge an Kartoffeln aus Israel werden 203 Liter eingesetzt. Davon sind 103 Liter blaues und 56 Liter graues Wasser. Für Kartoffeln aus Ägypten werden 418 Liter benötigt. Mit 278 Litern blauem und 118 Litern grauem Wasser steckt damit im Vergleich zu israelischen Kartoffeln sogar noch das Zweieinhalbfache blauen und grauen Wassers in ihnen. Daher ist der Kauf dieser Kartoffeln am problematischsten. Obwohl in Usbekistan für den Anbau der Baumwolle mit 13.160 Litern pro Kilogramm weniger Wasser benötigt wird als in Afrika, wo man für dieselbe Menge Baumwolle 22.583 Liter pro Kilogramm einsetzt, ist der Anbau in einem regenreichen afrikanischen Land wie Mosambik weniger problematisch: Mit 22.411 Litern an grünem Wasser und 172 Litern an grauem Wasser sind die Auswirkungen für den Anbau von einem Kilogramm Baumwolle weniger gravierend als in Usbekistan mit nur 203 Litern grünem Wasser. Dort werden 12.943 Liter des verwendeten Wassers als problematisch eingeschätzt, weil mit 11.126 Litern der Großteil des Bewässerungswassers dazu beiträgt, dass die geringen Wasserressourcen des Landes durch den Baumwollanbau bedroht sind. Außerdem verursacht ein Anteil von 1.817 Litern grauem Wasser am Wasserfußabdruck von einem Kilogramm Baumwolle aus Usbekistan eine beträchtliche Verschmutzung. Bei der Entnahme von blauem Wasser zur Bewässerung von Plantagen kann es zu ökologischen Schäden und lokalen Nutzungskonflikten kommen. Ein bekanntes Beispiel ist der Aralsee: Der einst viertgrößte Binnensee der Erde war im Jahr 1960 mit einer Fläche von 67.500 Quadratkilometern nur etwas kleiner als Bayern. Heute bedeckt er aufgrund gigantischer Wasserentnahmen für den Anbau von Baumwolle und Weizen nur noch etwa 10 % seiner ehemaligen Fläche. Bis 2014 verlor er 95 % seines Wasservolumens bei einem gleichzeitigen Anstieg des Salzgehalts um das Tausendfache. Auch in weiteren Gebieten auf der ganzen Welt trägt der Konsum in Deutschland dazu bei, dass deren Belastbarkeit überschritten wird (siehe Karte „Hotspots des Blauwasserverbrauchs mit Überschreitung der Belastbarkeitsgrenzen durch Konsum in Deutschland“).
Öffentliche Wasserversorgung Über die öffentliche Wasserversorgung erhält fast die gesamte Bevölkerung Deutschlands Trinkwasser. Im Jahr 2022 nutzte jede Person täglich 126 Liter. Das sind 18 Liter weniger als 1991. Im Vergleich zu 2019 ist die Nutzung von Trinkwasser um 2 Liter täglich pro Person gesunken. Grundwasser ist unsere wichtigste Ressource für die Trinkwasseraufbereitung. Grundwasser ist wichtigste Trinkwasserressource Über die öffentliche Wasserversorgung erhält fast die gesamte Bevölkerung Deutschlands Trinkwasser. Im Jahr 2022 nutzte jede Person täglich 126 Liter. Das sind 18 Liter weniger als 1991. Im Vergleich zu 2019 ist die Nutzung von Trinkwasser um 2 Liter täglich pro Person gesunken. Grundwasser ist unsere wichtigste Ressource für die Trinkwasseraufbereitung. 4,7 Milliarden Kubikmeter Trinkwasser Von den 5,3 Milliarden Kubikmeter (Mrd. m³) Rohwasser stellten die Unternehmen den Letzterbrauchern – also etwa Privathaushalten, Kindergärten, Krankenhäusern und Gewerbebetrieben – im Jahr 2022 knapp 4,7 Mrd. Kubikmeter Trinkwasser zur Verfügung. Davon gingen gut 81,5 % – das entspricht knapp 3,8 Mrd. m³ – an private Haushalte und Kleingewerbe, zum Beispiel an Bäckereien, Metzgereien, Arztpraxen und Anwaltskanzleien. Informationen, wofür das Wasser in den privaten Haushalten verwendet wird, finden Sie im Artikel „Wassernutzung privater Haushalte“ . Die verbleibende Menge von zirka 862 Mio. m³ lieferten die Wasserversorgungsunternehmen an Schulen, Behörden, Krankenhäuser und an größere gewerbliche Unternehmen. Einen geringen Teil des Trinkwassers benötigten die Wasserversorger selbst, bspw. zur Spülung von Filtern oder Leitung, oder es ging Wasser durch Rohrbrüche, Havarien oder unkontrollierte Entnahmen verloren (siehe Abb. „Wasserabgabe der öffentlichen Wasserversorgung an Letztverbraucher, Eigenverbrauch der Wasserwerke und Wasserverluste“). Insgesamt sinkender, zuletzt aber ansteigender Trinkwasserbedarf Die Wasserversorgungsunternehmen entnahmen in den Jahren 1991 bis 2022, trotz der Erhöhung, die wir seit 2013 beobachten, insgesamt weniger Wasser, um den Trinkwasserbedarf zu decken. Gegenüber den 5,3 Milliarden Kubikmeter (Mrd. m³) im Jahr 2022 waren es 1991 noch mehr als 6,5 Mrd. m³. Das ist ein Rückgang um 18 % (siehe Tab. „Wassergewinnung der öffentlichen Wasserversorgung nach Wasserarten“). Die Wassereinsparung wurde aus zwei Gründen möglich: Den Wasserversorgungsunternehmen gelang es, die Wasserverluste etwa durch Rohrbrüche und Undichtigkeiten spürbar zu senken: Im Jahr 1991 gingen auf diese Weise noch 758 Mio. m³ verloren, im Jahr 2022 noch 469 Mio. m³. Das ist im europäischen Vergleich eine sehr geringe Verlustrate. Den Hauptanteil an der Einsparung hatte jedoch die gesunkene individuelle Wassernutzung. Lag die tägliche Wassernutzung 1991 noch bei 144 Litern pro Einwohner sind heute 126 Liter (l) ausreichend (siehe Abb. „Öffentliche Wasserversorgung - Wasserabgabe an Haushalte“). Dieser Durchschnittswert verteilt sich jedoch recht breit zwischen den einzelnen Bundesländern. In Nordrhein-Westfalen, Bayern und Niedersachsen nutzte eine Person im Schnitt circa 135 l täglich, in Thüringen und Sachsen hingegen nur 96 l (siehe Abb. „Wasserabgabe zum Letztgebrauch an Haushalte und Kleingewerbe nach Bundesländern 2022“). Der Anstieg der Trinkwassernutzung von 2016 (123 l) auf 2019 (128 l) war dem höheren Wasserbedarf während der heißen und trocknen Sommer geschuldet. Demgegenüber wurde 2022 ein Rückgang auf 126 l pro Person/ Tag verzeichnet. Tab: Wassergewinnung der öffentlichen Wasserversorgung nach Wasserarten Quelle: Statistisches Bundesamt Tabelle als PDF Tabelle als Excel Öffentliche Wasserversorgung - Wasserabgabe an Haushalte Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Wasserabgabe zum Letztgebrauch an Haushalte und Kleingewerbe nach Bundesländern 2022 Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten
Boden ist ein empfindliches Gut und unterliegt schon allein durch die vielfältige Nutzung der Böden, z. B. in der Landwirtschaft, bei der Bebauung, durch Industrie und Verkehr zahlreichen Gefährdungen und Belastungen. Bodenbelastungen können in zwei Formen auftreten: als stoffliche Belastung , in dem Fremd- bzw. Schadstoffe in den Boden eingetragen werden, oder als nichtstoffliche Belastung , in dem Natur und Zustand des Bodens geändert wird z.B. durch: Erosion (Wind- und Wassererosion), Verdichtung, Versiegelung (Abdichtung des Bodens gegen die Atmosphäre), Verschlämmung, Abtrag (durch Rohstoffabbau). Im Sinne des Bundes-Bodenschutzgesetzes handelt es sich in beiden Fällen dann um “schädliche Bodenveränderungen”, wenn diese Beeinträchtigungen der Bodenfunktionen geeignet sind, Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für den einzelnen oder die Allgemeinheit herbeizuführen. Die größte Gefahr schädlicher Bodenveränderungen in Berlin besteht durch stoffliche Belastungen für das Grundwasser: Berlin bezieht sein gesamtes Trinkwasser aus dem Grundwasser, zu dem auch das aus Uferfiltrat gewonnene Grundwasser gehört. Besonders im Urstromtal steht das Grundwasser relativ nah an der Oberfläche und ist durch eine nur geringmächtige sandgeprägte Bodenschicht oft sehr schlecht gegen möglichen Schadstoffeintrag geschützt. Durch Beeinträchtigung des Grundwassers kann es zu Problemen bei der Trinkwasseraufbereitung und -versorgung kommen. Als besonders problematisch werden derzeit die Altlasten der alten Industriestandorte angesehen. Stoffliche Belastungen sind in der Vergangenheit durch unsachgemäßen Umgang mit wassergefährdenden Stoffen, Leckagen, Unfälle oder aufgrund von Kriegseinwirkungen entstanden. Auch heute noch kommt es zu stofflichen Belastungen durch unsachgemäße Handhabung von Mineralölen, aromatischen und chlorierten Kohlenwasserstoffen, PAK, PCB, Schwermetallen o.ä., aber auch z.B. durch Tausalze oder Hundekot in Baumscheiben. Quelle dieser Stoffe sind unter anderem Industrieanlagen, Tankstellen, chemische Reinigungen, Werkstätten, Lager und Umfüllanlagen, sie können jedoch auch aus dem Trümmerschutt stammen, der nach dem Krieg einplaniert wurde. Typische Stadtböden weisen deswegen in der Regel eine – stark schwankende – Grundbelastung mit diesen Stoffen auf. Schädliche Stoffeinträge gibt es aber auch auf Landwirtschaftsflächen zum Beispiel durch unsachgemäße Düngung oder auf Waldböden durch Luftschadstoffe. Die Wirkungen dieser stofflichen Belastungen sind so vielfältig wie die Stoffe selbst. Zunächst einmal können die Stoffe den Boden selbst und unmittelbar schädigen, häufig indem sie die Bodenorganismen oder die Pflanzenwurzeln beeinträchtigen. Über den Boden hinaus können die Belastungen über bestimmte “Pfade” weiter gehen: Wirkungspfad Boden – Mensch Er resultiert aus direktem Kontakt des Menschen mit dem Boden durch direkte Bodenaufnahme in den Mund (orale Aufnahme) oder durch Einatmen (Inhalation). Eine direkte Gefährdung des Menschen kann in seltenen Fällen dadurch entstehen, dass leichtflüchtige Bodenschadstoffe als schädliches Gas freigesetzt werden, das an der Bodenoberfläche austritt und durch Einatmen in den Körper gelangt. Vor allem für mit dem Boden spielende Kinder oder bei der Gartenarbeit ist der direkte Kontakt mit kontaminierten Boden relevant. Wirkungspfad Boden – Nutzpflanze Indirekte Wirkung zeigen die Bodenschadstoffe, wenn sie von (Nahrungs-) Pflanzen mit den Wurzeln aufgenommen werden; diese Schadstoffe können auch in die oberirdischen Pflanzenteile (Blätter, Früchte) transportiert werden. Der Verzehr solcher belasteter Nahrungspflanzen kann gesundheitsgefährdend sein. Bedeutsam ist dies auf ehemaligen Rieselfeldern und in Gärten, die auf ehemaligen Gewerbestandorten oder über Altablagerungen angelegt wurden. Dies kann auch auf Kleingärten in Berlin zutreffen; die dortigen Belastungen können allerdings ebenso durch schlechte Komposte (durch Asche etc.) oder unmittelbaren Straßeneinfluss entstanden sein. Wirkungspfad Boden – Grundwasser Der Boden gibt die Schadstoffe an das durchsickernde Wasser ab, das diese Belastung in das Grundwasser einträgt. Das Ausmaß dieser Belastung hängt vor allem von der Menge des Schadstoffs, von seiner Wasserlöslichkeit und von seiner Bindungskraft an Bodenpartikel ab. In Berlin ist die Belastung des Grundwassers die bedeutendste Auswirkung der Bodenverunreinigungen. Vor allem dann, wenn das Grundwasser der Trinkwassergewinnung dient, ist dieser Pfad wesentlicher Grund für notwendige Sanierungen. Je nach Nutzung der Fläche und Herkunft der Schadstoffe kann man unterscheiden: Altstandorte : Grundstücke stillgelegter Anlagen und sonstige Grundstücke, auf denen mit umweltgefährdenden Stoffen umgegangen worden ist und von denen eine Gefährdung ausgeht. Altablagerungen: Stillgelegte Abfallbeseitigungsanlagen sowie sonstige Grundstücke, auf denen Abfälle behandelt, gelagert oder abgelagert worden sind und von denen eine Gefährdung ausgeht. Immissionsgebiete: Gebiete, in denen Schadstoffe aus emittierenden Anlagen über die Luft in den Boden eingetragen werden. Rieselfelder : Die Böden sind durch Abwässer, die auf die Felder geleitet wurden, meist stark mit Schadstoffen angereichert. Landwirtschaftsflächen: Unsachgemäße Düngung (Tierpharmazeutika in der Gülle, Schwermetalle in Mineraldüngern, belastete Klärschlämme), Pestizide oder Luftschadstoffe können Äcker und Wiesen großflächig belasten. Waldgebiete: Im Wald machen sich vor allem versauernde und eutrophierende (= düngende) Luftschadstoffe bemerkbar, da die hohe Oberflächenrauheit die Luftschadstoffe auskämmt. Anders als in der Landwirtschaft fehlt die Bodenbearbeitung, so dass die Schadstoffe sich in der obersten Bodenschicht stark anreichern können. Da es normalerweise keine Düngung oder Kalkung gibt, wirkt sich der säurebildende Charakter von SO 2 , NO x und NH 3 im Boden besonders stark aus. Die in den letzten Jahren deutlich verringerten Schwermetalldepositionen sind auch in den Berliner Wäldern positiv zu beobachten. Für immobile Metalle wie Blei bedeutet dies jedoch eine weiterhin hohe Konzentration im Boden – wenn auch keine so hohe jährliche Steigerung mehr. Eine Gesamtbewertung der stofflichen Belastung des Berliner Stadtgebietes ist nicht möglich, da sich die bisherigen Untersuchungen dazu nicht auf die ganze Fläche beziehen, sondern die Proben nach vermuteten Belastungen genommen wurden. Wegen der hohen räumlichen Variabilität der Böden und der meist lokalen Belastungsursachen können die so ermittelten Werte nicht generell auf die Gesamtfläche übertragen werden. Versiegelung, Bodenschadverdichtung, Erosion (Wind- und Wassererosion), Abtrag, Auftrag und Durchmischung, also die nichtstofflichen Bodenbelastungen, beeinträchtigen nicht direkt und nicht primär die menschliche Gesundheit. Es lassen sich deswegen keine Belastungsgrenzen zur Gefahrenabwehr definieren und somit existieren keine diesbezüglichen Vorsorge- und Prüfwerte. In der Stadt bedeutet „nichtstoffliche Belastung“ vor allem Versiegelung des Bodens durch Nutzung als Baufläche für Siedlung und Verkehr. Wesentliches Ziel des Bodenschutzes im städtischen Bereich ist deswegen generell der Erhalt des Bodens, sein Schutz vor Überbauung und Versiegelung. Immer mehr Landwirtschafts- und Forstfläche, also Nutzungen, die den Boden relativ naturnah belassen, werden in Siedlungs- und Verkehrsfläche umgewandelt Flächeninanspruchnahme oder Flächenverbrauch , wodurch es zu starken Bodenveränderungen und somit zum Verlust wichtiger Bodenfunktionen kommt. Folgen sind die schleichende Verminderung der klimaökologischen Ausgleichsfunktion, der Wasserspeicherfunktion, der biotischen Funktionen sowie der Erholungsfunktion stadtnaher Freiräume. Die Dynamik der Veränderung der Bodennutzung wird deutlich, wenn man die Entwicklung der Siedlungs- und Verkehrsflächen näher betrachtet. Der steigende Lebensstandard seit Ende des zweiten Weltkrieges führte zu einer stetigen Ausweitung von Siedlungs- und Verkehrsflächen. Die räumliche Ausbreitung rund um die Ballungsgebiete führt zu einem erhöhten Verkehrsaufkommen auch wegen des zunehmenden Individualverkehrs. Daher entstehen neben den lokalen Immissionen durch mehr Autoverkehr auch mehr globale Belastungen (Treibhauseffekt). Aus Sicht des Bodenschutzes ist sowohl der Freiflächenverbrauch für versiegelungsintensive Nutzungen (z.B. Siedlungs- und Verkehrsflächen) als auch die Zunahme des Versiegelungsgrades insgesamt eindeutig negativ zu bewerten. Die Versiegelung von Böden hat gravierende Folgen für das Ökosystem Boden. Diese Folgen sind nicht oder nur teilweise reversibel. Vollständig versiegelte Flächen verlieren ihre Funktion als Pflanzenstandort, als Lebensraum von Organismen und als Grundwasserspender und –filter. Bodenversiegelung wirkt sich auf Grund der engen Verzahnung des Schutzgutes Boden mit den Schutzgütern Pflanzen und Tiere, Wasser und Klima auch auf diese negativ aus. Eine Trendwende bei Flächenverbrauch und Versiegelung herbeizuführen, ist zentrales Anliegen des vorsorgenden Bodenschutzes und seiner Maßnahmen.
In der vorliegenden Studie wurde eine Recherche zur aktuellen toxikologischen bzw. epidemiologischen Datenlage von 20 in der Trinkwasserverordnung regulierten perfluorierten Alkylsubstanzen ( PFAS , C4-C13 Carbon- und Sulfonsäuren) sowie 4 Ersatzstoffen (GenX, ADONA, 6:2 FTSA, C604) durchgeführt. Ziel war eine Aufbereitung dieser Daten als Grundlage für die toxikologische Bewertung der Substanzen mit Bezug auf ihr Vorkommen im Trinkwasser. Die erhobenen Daten sollen die Grundlagen für die Berechnung von gesundheitlich begründeten Leitwerten oder die Ableitung von Gesundheitlichen Orientierungswerten (GOW) für das Trinkwasser bilden. Die eigentliche Berechnung der Leitwerte und die Ableitung von GOW ist jedoch nicht Bestandteil dieser Studie. Veröffentlicht in Texte | 128/2023.
Rückstände aus der Trinkwasseraufbereitung Rückstände von bestimmten Verfahren der Aufbereitung von Grundwasser zu Trinkwasserzwecken können gegenüber dem natürlichen Hintergrund von Böden erhöhte Radionuklidgehalte aufweisen. Beim Umgang mit diesen Rückständen können unter ungünstigen Umständen Beschäftigte (innerhalb des Wasserwerks, aber auch im Zuge der Verwertung beziehungsweise Beseitigung) einer erhöhten Strahlung ausgesetzt sein. Der Artikel beschreibt die Entstehung dieser Rückstände und zeigt auf, welche Expositionspfade zu einer erhöhten Strahlenexposition für Beschäftigte führen können. Natürliche Radionuklide im Rohwasser Rückstandsarten bei der Wasseraufbereitung Beseitigung oder Verwertung Rechtlicher Rahmen Expositionspfade und Expositionsszenarien Literatur Natürliche Radionuklide im Rohwasser Radionuklide der natürlichen Zerfallsreihen von Uran -238, Uran -235 und Thorium-232 sind in allen Gesteinen in Spuren anzutreffen. Wenn Rohwasser mit diesen Gesteinen in Kontakt kommt, lösen sich Radionuklide zu einem kleinen Teil aus dem Gestein heraus und gelangen in das Grundwasser. Die Aktivitätskonzentration hängt entscheidend von der Gesteinsart und deren chemischer Zusammensetzung ab. Die Studie Strahlenexposition durch natürliche Radionuklide im Trinkwasser in der Bundesrepublik Deutschland des Bundesamtes für Strahlenschutz ( BfS ) bestätigte dies. Die Tabelle zeigt einen Auszug der Ergebnisse: Medianwerte (Med) und Maximalwerte (Max) der Aktivitätskonzentrationen häufig vorkommender natürlicher Radionuklide im Rohwasser in Millibecquerel pro Liter, abhängig von der Gesteinsart der wasserführenden Grundwasserschicht ( Strahlenexposition durch natürliche Radionuklide im Trinkwasser in der Bundesrepublik Deutschland ) Gesteinsart U -238 Ra -226 Pb -210 Po -210 Ra -228 Med Max Med Max Med Max Med Max Med Max Basalt <0,74 5,7 1,0 2,8 1,9 20 0,99 5,6 <0,81 5,4 Gneis <0,74 15 2,2 7,0 7,8 29 1,8 8,3 4,3 7,8 Granit 1,2 53 12 98 9,5 70 2,0 19 11 29 Kalkstein 6,0 210 5,9 160 3,2 23 1,3 18 5,4 110 Sand 3,6 120 7,1 36 2,1 18 1,3 19 6,7 46 Schiefer 1,1 97 2,6 27 2,1 19 1,8 9,4 3,7 26 Sandstein 17 590 12 380 3,6 31 2,9 630 9,3 210 sonstiges Gestein 2,5 620 8,0 300 4,1 270 2,0 410 7,5 130 Die Aktivitätskonzentration der Radionuklide im Rohwasser ist zudem abhängig von dem Redox-Potential , dem pH-Wert im Rohwasser und der Löslichkeit der Radionuklide . nach oben Rückstandsarten bei der Wasseraufbereitung Um die Vorgaben der Trinkwasserverordnung einzuhalten, müssen Rohwässer gegebenenfalls zu Trinkwasserqualität aufbereitet werden. Zur Entfernung von Störstoffen wendet man je nach chemischer Zusammensetzung des Wassers unterschiedliche Verfahren zur Wasseraufbereitung an. Die dabei anfallenden Rückstände sind nach einer Definition [1] des Deutschen Vereins des Gas- und Wasserfaches (DVGW) hauptsächlich eisenhaltige Schlämme, kalkhaltige Schlämme, Flockungsschlämme, Aktivkohle und Siebgut. Weitere Rückstände können beim Austausch von Filtermaterial (zum Beispiel Filtersand/Filterkies) oder speziellen Absorberharzen sowie beim Anlagenrückbau (zum Beispiel Rohre mit Ablagerungen) anfallen. Bisher wurden bei der Trinkwasseraufbereitung Radionuklide normalerweise nicht gezielt entfernt. Trotzdem können sich diese in einem Teil der Rückstände über das natürliche Niveau von Böden und Gesteinen hinaus anreichern. Im Oberflächenwasser ist die Konzentration natürlicher Radionuklide geringer als im Grundwasser; deshalb sind vor allem bei der Aufbereitung von Grundwasser Rückstände mit erhöhten Radionuklidgehalten zu erwarten. Medianwerte (Med) und Maximalwerte (Max) der Aktivitätskonzentrationen häufig vorkommender natürlicher Radionuklide im Oberflächenwasser und im Grundwasser in Millibecquerel pro Liter ( Strahlenexposition durch natürliche Radionuklide im Trinkwasser in der Bundesrepublik Deutschland ) Wasserart U -238 Ra -226 Pb -210 Po-210 Ra -228 Med Max Med Max Med Max Med Max Med Max Grundwasser 5,4 620 8,4 380 2,7 82 1,6 630 7,8 210 Oberflächen-Wasser 1,3 39 4,3 32 2,2 29 1,6 19 4,2 42 Bisher sind bei Rückständen aus der Aufbereitung von Grundwasser zu Trinkwasser erhöhte Radionuklidgehalte in Eisenschlämmen und Kalkschlämmen aus der Entsäuerung sowie in Austauschharzen, Aktivkohle und Filterkiesen aus der Enteisenung/Entmanganung bekannt. Bei Thermalwasserquellen wurde zudem von radionuklidhaltigen Inkrustationen berichtet . In den vor allem bei der Aufbereitung von Oberflächenwasser anfallenden Flockungsschlämmen und im Siebgut sind keine erhöhten Radionuklidgehalte zu erwarten. Der DVGW hat mit dem Arbeitsblatt W256 [2] Hinweise und Hintergrundinformationen zu Vorkommen, Verwertung und Entsorgung von radionuklidhaltigen Rückständen in der Wasserversorgung veröffentlicht. nach oben Beseitigung oder Verwertung Nach dem Kreislaufwirtschaftsgesetz ist die Verwertung gegenüber einer Beseitigung vorzuziehen. Allerdings entfällt bei einer Gefahr für Mensch und Umwelt der Vorrang zur Verwertung. Von den oben aufgeführten Rückständen können Eisenschlämme, Kalkschlämme aus der Entsäuerung und Filterkiese grundsätzlich wiederverwertet werden. Der DVGW empfiehlt in seinem Merkblatt W221-3 [1] für diese Rückstände verschiedene Verwertungsmöglichkeiten: Eisenschlämme werden in der Umwelttechnik verwendet, um den Gehalt an Schwefelwasserstoff und Phosphat zu senken. Außerdem kommen sie in der Ziegelindustrie und in der Zementindustrie sowie bei der Herstellung von Pflanzgranulat als Sekundärrohstoff zum Einsatz. In der Vergangenheit wurden etwa 35 Prozent der Eisenschlämme deponiert; aus abfallrechtlichen Gründen wird dieser Anteil in Zukunft voraussichtlich sinken. Kalkschlämme aus der Entsäuerung werden zur Verbesserung ("Melioration") des pH-Wertes im Boden in der Land- und Forstwirtschaft ausgebracht. Die Verwertung dieser Rückstände - etwa bei der Herstellung von Kalk und Zement oder zur Herstellung künstlicher Bodensubstrate – ist denkbar. Da Filterkiese aus der Enteisenung und Entmanganung über mehrere Jahre bis Jahrzehnte im Wasserwerk im Einsatz bleiben, fallen diese nur selten als Rückstand bei den Wasserversorgern an. Deshalb haben sich für diese Rückstände keine festen Entsorgungswege durchgesetzt. Von Einzelfällen ist bekannt, dass die Kiese zur Inbetriebnahme neuer Filteranlage in anderen Wasserwerken oder im Straßenbau eingesetzt werden. Zudem könnten sie im Landschafts- und Wegebau verwertet werden. Informationen zur Menge der verwerteten oder deponierten Rückstände sind nicht veröffentlicht und liegen auch dem DVGW nicht vor. Für Ablagerungen ist bisher keine Verwertungsoption bekannt, während Aktivkohle und Absorberharze aufgrund des hohen Kohlenstoffanteils grundsätzlich thermisch verwertbar sind. nach oben Rechtlicher Rahmen Anfang 2014 veröffentlichte die Europäische Atomgemeinschaft ( EURATOM ) europäische Grundnormen zum Strahlenschutz . Darin werden Rückstände aus Grundwasserfilteranlagen als ein relevanter Industriezweig eingestuft. Die EURATOM -Mitgliedsländer sind verpflichtet, diese Regelungen in nationales Recht umzusetzen. Strahlenschutzgesetz und Strahlenschutzverordnung In Deutschland erfolgte dies im Jahr 2017 mit dem Strahlenschutzgesetz . Ergänzend hierzu wurde die Strahlenschutzverordnung im Jahr 2018 überarbeitet. Beide gesetzlichen Regelungen sind seit dem 31.12.2018 in Kraft. In der Anlage 1 zum Strahlenschutzgesetz werden Filterkiese, Filtersande und Kornaktivkohle erstmals in der Liste der zu berücksichtigenden Rückstände mit aufgeführt und unterliegen somit den Regelungen des Strahlenschutzgesetzes. Weitere Vorgaben Sofern Rückstände aus Wasserwerken in Bauprodukten wiederverwertet werden, sind zudem die Vorgaben der europäischen Empfehlung zur natürlichen Radioaktivität in Baumaterialien einzuhalten, nach der von handelsüblichen Baustoffen keine erhöhte Strahlenexposition für die Bevölkerung ausgehen sollte. Im Strahlenschutzgesetz sind auch Regelungen für Bauprodukte niedergelegt, die ebenfalls zum 31.12.2018 in Kraft traten. Weiterhin ist zu prüfen, ob die geplante Verwertung oder Beseitigung abfallrechtlich zulässig sind. Insbesondere bei einer Verwertung im Landschaftsbau oder im Straßenbau sind die Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen der Bund/Länder-Arbeitsgemeinschaft Abfall (LAGA) zum Auslaugverhalten von mineralischen Reststoffen zu berücksichtigen. Für den Transport von Materialien muss das Europäische Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straße (ADR) eingehalten werden. nach oben Expositionspfade und Expositionsszenarien Je nach Menge, Radionuklidgehalt im Rückstand und Entsorgungsvariante können Beschäftigte - in Wasserwerken oder bei Entsorgungs- beziehungsweise Verwertungsfirmen - beim Umgang mit Rückständen aus Wasserwerken einer erhöhten Strahlenexposition ausgesetzt sein. Ob tatsächlich eine erheblich erhöhte Strahlenexposition (mehr als einem Millisievert pro Jahr zusätzlich zur natürlichen Umweltradioaktivität) für Beschäftigte zu befürchten ist, lässt sich anhand einer Dosisabschätzung ermitteln. Bei einer Dosisabschätzung sollten die Situationen Aufenthalt der Beschäftigten in Räumen, in denen Rückstände lagern, Umgang mit den Rückständen bei Lagerung, Verwertung, Transport oder Beseitigung und Wartung beziehungsweise Reinigung von Betriebsanlagen betrachtet werden. Aus Sicht des Strahlenschutzes sind dabei die Expositionspfade äußere Gammastrahlung , Inhalation von Staub und Inhalation von Radon und Radonzerfallsprodukten zu berücksichtigen. Weiterhin können bei einer Deponierung oder einer Verwertung im Straßenbau und vor allem im Landschaftsbau Radionuklide aus den Rückständen mit dem Sickerwasser freigesetzt und ins Grundwasser eingetragen werden. Für die Allgemeinbevölkerung ergibt sich bei einer Nutzung dieses Grundwassers unter Umständen ein zusätzlicher Expositionspfad. Die Verwendung beeinträchtigten Grundwassers aus einem Privatbrunnen zu Trinkwasserzwecken oder zur Beregnung ist daher bei einer Dosisabschätzung zwingend zu berücksichtigen. Abschätzung der Strahlenexposition für Beschäftige in Wasserwerken, bei Entsorgungsbetrieben und bei Verwertern In verschiedenen Studien wurde für den Umgang mit Eisen-, Mangan- und Kalkschlämmen die Strahlenexposition für Beschäftige in Wasserwerken, bei Entsorgungsbetrieben und bei Verwertern abgeschätzt ("Ermittlung von Arbeitsfeldern mit erhöhter Exposition durch natürliche Radionuklide und überwachungsbedürftige Rückstände – Rückstände aus der Trinkwasseraufbereitung, Teil I und Teil II "). Im Ergebnis ist selbst unter ungünstigen Annahmen eine Überschreitung des Dosisrichtwerts für die Bevölkerung von einem Millisievert pro Jahr nicht zu befürchten. Aus den bisher veröffentlichten Aktivitätsgehalten zu Aktivkohle und Inkrustation aus Wasserwerken ist ebenfalls keine erhöhte Strahlenexposition für die Bevölkerung abzuleiten. Bei der Entsorgung oder Verwertung von Filterkiesen aus der Manganentferung/Eisenentfernung sowie von hochbeladenen Austauschharzen, die bei der gezielten Entfernung von Uran entstehen, kann eine Überschreitung des Dosisrichtwertes nach bisherigem Kenntnisstand unter ungünstigen Umständen nicht gänzlich ausgeschlossen werden. In diesen Fällen wird eine Einzelfallbetrachtung empfohlen. Sollte nach dieser Prüfung der Dosisrichtwert tatsächlich überschritten sein, ist in diesen Fällen zu klären, welche Maßnahmen zur Dosisminderung mit vertretbarem Aufwand eingeführt werden können. Hierzu zählen beispielsweise das Tragen persönlicher Schutzausrüstung oder die Suche nach alternativen Entsorgungswegen. Berechnungsvorschriften Das BfS erstellt aktuell Berechnungsvorschriften, mit denen sich die effektive Dosis für Beschäftigte und Personen der Bevölkerung aufgrund einer Exposition durch NORM -Stoffe abschätzen lässt (Berechnungsgrundlagen NORM ). Bis zur Fertigstellung dieser Berechnungsvorschrift bietet das BfS Empfehlungen für eine vereinfachte Abschätzung der Strahlenexposition für Beschäftigte und Personen der Bevölkerung an. nach oben Literatur [1] DVGW (2000): Rückstände und Nebenprodukte aus Wasseraufbereitungsanlagen; Teil 3: Vermeidung, Verwertung und Beseitigung. DVGW -Arbeitsblatt W221-3 [2] DVGW (2020): Radionuklidhaltige Rückstände aus der Aufbereitung von Grundwasser – Bewertung und Entsorgung. DVGW -Arbeitsblatt W256 Stand: 17.04.2024
Origin | Count |
---|---|
Bund | 822 |
Land | 32 |
Type | Count |
---|---|
Förderprogramm | 770 |
Text | 44 |
Umweltprüfung | 4 |
unbekannt | 35 |
License | Count |
---|---|
geschlossen | 78 |
offen | 773 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 812 |
Englisch | 57 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 3 |
Datei | 4 |
Dokument | 30 |
Keine | 583 |
Webseite | 257 |
Topic | Count |
---|---|
Boden | 495 |
Lebewesen & Lebensräume | 648 |
Luft | 347 |
Mensch & Umwelt | 852 |
Wasser | 853 |
Weitere | 853 |