Am 26. Januar 2017 wurde das Forschungslabor für Turbulenz und Windenergiesysteme (WindLab) der Universität Oldenburg eingeweiht. Herzstück des Neubaus mit 2.300 Quadratmetern Nutzfläche ist ein turbulenter Windkanal, mit dessen Hilfe das Zusammenspiel von atmosphärischen Strömungen mit Windparks, Windenergieanlagen und ihren Komponenten untersucht werden soll. Ziel sind exakte Daten über das Betriebsverhalten von Windenergieanlagen und großen Offshore-Windparks. Das vierstöckige WindLab bietet Platz für Physiker, Meteorologen, Ozeanographen und Ingenieurswissenschaftler. Im Vergleich zu Windkanälen, wie sie beispielsweise in der Luftfahrt genutzt werden, lassen sich in dem turbulenten Oldenburger Windkanal Windfelder simulieren, wie sie in der Natur vorkommen. Die Untersuchungen sollen dazu beitragen, die Effizienz von Windparks zu steigern und technische wie finanzielle Risiken zu vermeiden.
Das Projekt "Ozone soundings as a tool for detecting ozone change" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Institut AWI - Forschungsstelle Potsdam durchgeführt. Objective: 1. To measure the rate and extent of ozone loss both inside the Arctic vortex and at middle latitudes during the winters of 1995-96, 96-97 and 97-98. 2. To follow the ozone destruction as it develops during an individual winter and from one winter to the next. 3. To investigate the structure and duration of laminae episodes. 4. To extend the important record of ozonesonde data obtained during the last four winters. 5. To build a data base of quality controlled ozonesonde data collected since 1988. 6. To provide this and other projects with meteorological analyses and forecasts from ECMWF. General Information: The work programme consists of five work packages: 1. Purchase and distribution of sondes and sonde operation 2. Match campaign and analysis If ozone loss occurs it will be detected by launching sondes from different stations into the same air mass a few days apart. This is achieved by using forecast trajectories. A large number of such matching pairs is needed in order to get a good statistics. It is the aim to investigate the ozone loss both inside the polar vortex and at middle latitudes. Sondes launched in Canada will be used as primary sondes, and the same air mass will be measured by the European stations. 3. Ozone laminae, climatology and trends 3.1 Mean ozone field 3.2 Ozone versus potential vorticity (PV) The effects of dynamics will be isolated from chemical effects by considering the relative evolution of ozone and PV. 3.3 Extension to subtropical latitudes This activity will address changes in the ozone distribution caused by dynamical changes, which can then be linked to the effects seen at middle latitudes. 3.4 Ozone trends on isentropic levels The temporal evolution of the ozone mixing ratio at isentropic surfaces will be studied. Diabatic descent will be accounted for. Data will be sorted according to the PV values at the sounding site. 3.5 Measurement of ozone laminae A newly improved ozone lidar will measure ozone from 4 to 18 km. It will be used to measure the passage of ozone laminae over Aberystwyth, in order to determine the typical along-flow scales of these features. 4. Quality control and homogeneous ozonesonde data base Ozonesonde data will be subject to daily quality control. A comparison of how the different stations convert raw data to geophysical data will be carried out before winter 1996-97. Common sounding instructions will be distributed to the stations. After the campaign the post mission quality control will verify the correctness of the final data in close collaboration with the station PIs. An archive of quality controlled data from 1988-1998 will be made and disseminated on CD-ROM. 5. Data centre and ECMWF data Ozonesonde data will be collected from the sounding stations in near real time. Data from ECMWF will be collected for use by OSDOC and some other projects. Prime Contractor: Norwegian Institute for Air Research; Kjeller; Norway.
Das Projekt "IFS" wird vom Umweltbundesamt gefördert und von Universität Magdeburg, Institut für Apparate und Umweltechnik durchgeführt. Höchstdruck-Löschtechnik (HD-Löschtechnik) mit Wassernebel ist eine hochmoderne Brandbekämpfungsmethode mit enormem Zukunftspotenzial. Allerdings ist von den verschiedenen, zur Brandbekämpfung notwendigen Schaumarten lediglich eine Art verfügbar (Schwerschaum). Geräte zur Erzeugung leichterer Schäume, werden bisher am Markt nicht angeboten. Diese Marktlücke soll durch das innovative handgehaltene Mittelschaumgerät FoamGiant - das auf dem neuartigen Hydro Jet Turbo - Prinzip (HJT) basiert - geschlossen werden. Das Prinzip besteht darin, die kinetische Energie des schnellen Höchstdruck-Wasserstrahls (über 500 km/h) dafür zu nutzen, erstmalig große Mengen Mittelschaum mit hoher Wurfweite und stufenlos einstellbaren Eigenschaften zu erzeugen. Für HD-Löschanlagen ergeben sich dadurch erstmalig neue Anwendungsbereiche: z.B. schnelles Einschäumen großflächiger Flüssigkeitsbrände und kompletter Räume, Erzeugung von Schaumwällen zur Waldbrandbekämpfung. Zudem wird ein nachhaltiger Beitrag für die Umwelt durch die Einsparung von Wasser und Schaummittel geleistet. Das interdisziplinäre Gründerteam besteht aus den langjährigen Freunden B. Sc. Maximilian Friedrichs (Maschinenbau) und B. Sc. Jan Langhanki (Wirtschaftswissenschaften). Maximilian Friedrichs verfügt u.a. über Kompetenzen im Bereich der Produktentwicklung, Konstruktion sowie Fertigung. Jan Langhanki zeichnet sich durch seine Kenntnisse und Erfahrung im Bereich Sales, Marketing und Unternehmensorganisation aus. Potenzielle Kunden sind vor allem Freiwillige, Berufs- und Werksfeuerwehren sowie brandgefährdete Betriebe im In- und Ausland. Allein in Deutschland gibt es ca. 23.000 Feuerwehren und 40.000 brandgefährdete Betriebe. Der Umsatz wird primär durch die eigene Herstellung und Vertrieb von FoamGiant erwirtschaftet. Zudem sind Weiterentwicklungen von FoamGiant sowie die Entwicklung und Vermarktung eines umfassenden, spezialisierten Zubehörsortiments für HD-Löschanlagen geplant.
Das Projekt "Almeria solar powered reverse osmosis plant" wird vom Umweltbundesamt gefördert und von DaimlerChrysler Aerospace AG durchgeführt. Objective: To demonstrate, that small scale PV powered water desalination plants can be constructed in a compact and cost efficient way. This type of plant is urgently needed in Southern Europe and Developing Countries. Intensive publicity is intended and good commercialisation is expected (100 systems potential market in Spain only). General Information: On the site of the ALMERIA university, brackish water is pumped from a well of 60m. Drinking water (about 8000 cbm per year) obtained by a reverse osmosis plant is stored for consumption. A 23.5 kWp PV generator supplies the required energy. Number of subsystems: 1 Power of subsystems: 23.5 kWp Total power: 23.5 kWp Module description: 612 AEG type PQ 10/20/01;(Typ I) + 306 AEG type PQ 10/40/01;(T.II) (I): 20 10x10cm poly crist. cells, 6 V,16.5 W (II): 40 10x10cm poly crist. cells, 12 V,38.4 W Very high resistance glass; UV stabilized PVB; 6.7 kg; 0.25 or 0.5 sqm. Connections: type 20: 36 series, 17 parall.: type 40: 18 series, 17 parall. Support: on racks Max. power tracker: included in inverter Charge controller: charge/discharge regulator: special design, microprocessor controlled. Battery: Spanish TUDOR, 110 cells Battery Volt.: 220 V; Battery capacity: 2240 Ah.(at 100 h). (1650 Ah (10h); type C 10 Battery capacity: 493 kWh.(at 100 h). Inverter: (for well water pump only): AEG, Solarverter, type SV3 sinusoidal, transistor-pulse type, 3 kHz. Input nominal: 130 to 300 V DC in; max 16 A Dc; Output nominal: 3.3 kVA; 13 to 127 V out; 3 phases; to 50/60 Hz. Load description: PLEUGER submersible pump NE612 for raw water pumping. (three phase, AC motor, hence inverter necessary). 4.2 cbm/h, header 30 m. Rated power 2.2 kW. ROCHEM (Hamburg) reverse osmosis, type RORO 1535-B 709165; presses raw water through membrane. Input: 92 cbm/day at 7000 ppm; Output: 60 cbm/day at smaller than 500 ppm. New type of PLATE MODULE system, with turbulent flow on the feed water side and hence less membrane scaling and fouling which leads to less maintenance. The pressure pump of the RO system works with 220 V DC motor, 6750 W, avoiding inverters. Monitoring: Weather station; Reading every 10 seconds six relevant plant data, averaging over ten minutes, storing on floppy. (DAM 800 data acquisition system by TELEFUNKEN). Stored data: (1) Insolation, array plane. (2) amb. temp. (3) module temp. (4) array output energy. (5) energy to and from battery. (6) inverter dc energy. Achievements: While the pv generator and the batteries worked without problem the water pumps, the reverse osmosis plant, the inverter and the monitoring system had several, partly major, failures. The Final Report on System Monitoring (5 June 95) analyses 32 month of operation and puts in evidence: the system is well designed for its task; however the frequent failures of some components decrease its effective utilisation. The plant will continue to operate after the end of the project with some improvements (new pumps, new membranes, etc.)...
Das Projekt "Wellen und Turbulenz in der Atmosphäre und im Ozean" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt.
Das Projekt "Brechende Wellen und der Luft-See-Gasaustausch" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Chemie (Otto-Hahn-Institut) durchgeführt. The principal aim of the proposed research is to understand, quantify and parameterize the effect of breaking waves on gas transfer through the sea surface micro-layer. Three quite distinct mechanisms of gas transfer are associated with large-scale wave breaking and air entrainment: 1. Transfer associated with patches of turbulence in the upper ocean generated by breaking waves. 2. Transfer mediated by bubbles, where gas is within a bubble during an interval of its exchange between atmosphere and ocean. 3. Transfer across the sea surface where the micro-layer has been disrupted by bubbles bursting at the sea surface.
Das Projekt "Teilprojekt 2 (Modul B)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Das Ziel dieses Vorhabens ist die Entwicklung von Verfahren (Parameterisierungen), mit denen sich die turbulenten Transporte von Energie und Impuls über dem polaren Meereis in Klima- und Wettervorhersagemodellen (MiKlip Modelle) präziser als bisher berechnen lassen. Der Schwerpunkt liegt dabei auf der Berücksichtigung der komplexen Vorgänge in der oberflächennahen Atmosphäre im Bereich von Eisrinnen. Die potentiellen Auswirkungen auf die Energietransporte einer sich im nächsten Jahrhundert ändernden Meereisbedeckung sollen schließlich quantifiziert werden. Das Projekt ist in 3 Arbeitspakete gegliedert (siehe Vorhabenbeschreibung im Anhang), die im Wesentlichen beim AWI bearbeitet werden. Zu diesen Arbeitspaketen werden von der Uni Hamburg Fernerkundungsdaten aufbereitet und bereitgestellt.
Das Projekt "SLAT NOISE" wird vom Umweltbundesamt gefördert und von Technische Hochschule Aachen, Lehrstuhl für Strömungslehre und Aerodynamisches Institut durchgeführt. Das Vorhaben ist Teil des Verbundes FREQUENZ. Grundlegendes Ziel des beantragten Vorhabens ist die anwendungsbasierte Validierung eines numerischen Verfahrens, mit dem bezüglich des Slatlärms der Mechanismus der Lärmentstehung analysiert und die Schallabstrahlung vorhergesagt werden kann. Dabei wird ein hybrider Ansatz verwendet, in dem das strömungsmechanische und das akustische Feld separat voneinander berechnet werden, um die deutlichen Unterschiede in den jeweiligen charakteristischen Längenskalen in der Gitterauflösung berücksichtigen zu können Das LES/CAA Verfahren wird zur Untersuchung der Geräuschemission von Slatgeometrien verwendet, wobei der Schwerpunkt auf der Analyse des direkten Slatlärms liegen wird, der durch die Wechselwirkung zwischen Turbulenz, Hinterkante und Spaltströmung hervorgerufen wird. Darüber hinaus soll der Lärmmechanismus, der einerseits durch aus dem Cove-Bereich abfließende Wirbel und andererseits variierende Wirbelgeometrien bedingt ist, analysiert werden. Das langfristige Ziel liegt in der Anwendung der numerischen Methode zur Geräuschanalyse von Umströmungslärmkonfigurationen, um die gewonnenen Erkenntnisse in einen Design-to-Low-Noise Entwurf einfließen lassen zu können.
Das Projekt "(Phase 2) - AG-Turbo Vorhaben 4.4.6 - Reaktormodellierung - Teilvorhaben Thermochemisches Modell für die NOx-Bildung Teilprojekt 4.4.6E" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Fakultät für Energietechnik, Institut für Technische Verbrennung durchgeführt. Verbundprojekt für ein CO2-armes GuD Kraftwerk 500 MW auf einer Welle; Thermochemisches Modell: Ziel ist die Beschreibung der NOx-Bildung bei der Verbrennung in Gasturbinen. Es besteht ein großer Bedarf an zuverlässigen thermochemischen Modellen zur kinetischen Beschreibung der NOx-Chemie und deren Kopplung mit turbulenten Strömungsprozessen. Dabei soll die Bildungsgeschwindigkeit von NO in die im Rahmen des AG Turbo Projektes 3.3.1 erarbeiteten vereinfachten Modelle der Methanverbrennung bestimmt werden und das thermochemische Modell dahingehend erweitert werden, dass neben Zünd- und Löschverhalten auch die Vorhersage der NOx-Bildung möglich is Erweiterung der ILDM-Tabellen durch Aufnahme der NOx-Bildungsraten für die in Projekt 3.3.1 bereits definierten thermodynamischen Bedingungen. Anwendung des NOx-Postprozessors auf technische Aufgabenstellungen: Anhand geeigneter Testfälle der Industriepartner wird der Code auf Effizienz und Genauigkeit hin überprüft. Die in 3.3.1 entwickelten Modelle erlauben eine zuverlässige Beschreibung der Kinetik. Die Erweiterung der vereinfachten thermochemische Modelle auf eine Beschreibung der NOx -Bildung erscheint deshalb möglich.
Das Projekt "Clean Sky Technology Eco Design (Clean Sky ECO)" wird vom Umweltbundesamt gefördert und von Airbus Helicopters Deutschland GmbH durchgeführt. The Eco-Design ITD (ED-ITD) gathers and structures from one side activities concerned specifically with development of new material and process technologies and demonstration on airframe and rotorcraft related parts stressing the ecolonomic aspects of such new technologies; from the other side, activities related to the All Electrical Aircraft concept related to small aircraft. ED-ITD is directly focused on the last ACARE goal: 'To make substantial progress in reducing the environmental impact of the manufacture, maintenance and disposal of aircraft and related products'. Reduction of environmental impacts during out of operation phases of the aircraft lifecycle can be estimated to around 20 % reduction of the total amount of the CO2 emitted by all the processes (direct emissions and indirect emissions i.e. produced when producing the energy) and 15 % of the total amount of the energy used by all the processes. In addition, expected benefit brought by the All Electric Aircraft concept to be highlighted through the conceptual aircraft defined in the vehicle ITDs is estimated to around 2% fuel consumption reduction due to mass benefits and better energy management. The status of the global fleet in the year 2000 constitutes the baseline against which achievements will be assessed. Progress toward these goals will result not only from ED internal activities but also from the collaboration with the relevant cross-cutting activities in GRA , GRC, SFWA (business jet platform) and SGO (electrical systems).
Origin | Count |
---|---|
Bund | 889 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 888 |
License | Count |
---|---|
open | 889 |
Language | Count |
---|---|
Deutsch | 889 |
Englisch | 218 |
Resource type | Count |
---|---|
Datei | 1 |
Keine | 636 |
Webseite | 253 |
Topic | Count |
---|---|
Boden | 533 |
Lebewesen & Lebensräume | 550 |
Luft | 642 |
Mensch & Umwelt | 887 |
Wasser | 564 |
Weitere | 889 |