Web Map Service (WMS) zum Thema Business Improvement Districts. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Web Feature Service (WFS) zum Thema Business Improvement Districts. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Business Improvement Districts (BID), die in Hamburg Innovationsbereiche genannt werden, sind klar begrenzte Geschäftsgebiete (Business Districts), in denen auf Veranlassung der Betroffenen (z. B. Eigentümerschaft und Gewerbetreibenden) in einem festgelegten Zeitraum (maximal 8 Jahre) in Eigenorganisation Maßnahmen zur Quartiersaufwertung (Improvement) durchgeführt werden. Ein Ziel dabei ist es, durch die Schaffung eines Innovationsbereichs die Attraktivität eines Einzelhandels-, Dienstleistungs- und Gewerbezentrums für Kunden, Besucherinnen und Besucher zu erhöhen. Finanziert werden BIDs durch eine kommunale Abgabe, die alle im Gebiet ansässigen Grundeigentümerinnen und Grundeigentümer zu leisten haben. In diesem Datensatz werden alle laufenden BID in der Hamburger Innenstadt dargestellt.
Das Projekt "Palaeo-Evo-Devo of Malacostraca - a key to the evolutionary history of 'higher' crustaceans" wird vom Umweltbundesamt gefördert und von Universität Greifswald, Zoologisches Institut und Museum, Abteilung Cytologie und Evolutionsbiologie durchgeführt. In my project I aim at a better understanding of the evolution of malacostracan crustaceans, which includes very different groups such as mantis shrimps, krill and lobsters. Previous studies on Malacostraca, on extant as well as on fossil representatives, focussed on adult morphology.In contrast to such approaches, I will apply a Palaeo-Evo-Devo approach to shed new light on the evolution of Malacostraca. Palaeo-Evo-Devo uses data of different developmental stages of fossil malacostracan crustaceans, such as larval and juvenile stages. With this approach I aim at bridging morphological gaps between the different diverse lineages of modern malacostracans by providing new insights into the character evolution in these lineages.An extensive number of larval and juvenile malacostracans is present in the fossil record, but which have only scarcely been studied. The backbone of this project will be on malacostracans from the Solnhofen Lithographic Limestones (ca. 150 million years old), which are especially well preserved and exhibit minute details. During previous studies, I developed new documentation methods for tiny fossils from these deposits, e.g., fluorescence composite microscopy, and also discovered the first fossil mantis shrimp larvae. For malcostracan groups that do not occur in Solnhofen, I will investigate fossils from other lagerstätten, e.g., Mazon Creek and Bear Gulch (USA), or Montceaules- Mines and La-Voulte-sur-Rhône (France). The main groups in focus are mantis shrimps and certain other shrimps (e.g., mysids, caridoids), as well as the bottom-living ten-footed crustaceans (reptantians). Examples for studied structures are leg details, including the feeding apparatus, but also eyes. The results will contribute to the reconstruction of 3D computer models.The data collected in this project will be used for evaluating the relationships within Malacostraca, but mainly for providing plausible evolutionary scenarios, how the modern malacostracan diversity evolved. With the Palaeo-Evo-Devo approach, I am also able to detect shifts in developmental timing, called heterochrony, which is interpreted as one of the major driving forces of evolution. Finally, the reconstructed evolutionary patterns can be compared between the different lineages for convergencies. These comparisons might help to explain the convergent adaptation to similar ecological niches in different malacostracan groups, e.g., life in the deep sea, life on the sea bottom, evolution of metamorphosis or of predatory larvae.As the project requires the investigation of a large number of specimens in different groups, I will assign distinct sub-projects to three doctoral researchers. The results of this project will not only be published in peer-reviewed journals, but will also be presented to the non-scientific public, e.g., during fossil fairs or museum exhibitions with 3D models engraved in glass blocks.
Das Projekt "Multi-proxy tree-ring analysis of conifer trees disturbed by insect outbreaks" wird vom Umweltbundesamt gefördert und von University of British Columbia, Faculty of Forestry, Department of Forest Resources Management Vancouver durchgeführt. Insect outbreaks are a major disturbance influencing forest dynamics in many ecosystems and can affect forest productivity worldwide. Reconstruction of insect outbreak history is fundamental to forest management. While the action of cambium feeders on trees leads to the formation of scars, that of defoliators is observable via growth suppression in tree rings. The occurrence of past insect attacks can thus be inferred from such tree-ring signatures. However, it necessitates an accurate dating of events, with high temporal resolution, as well as their correct attribution to the right disturbance agent. Fire also leaves scars on trees that can occur on cross-sectional disks where insect scars are already present, thus making them difficult to distinguish. Furthermore, insect-elicited reductions in radial growth may not be clearly visible on samples, and the radial growth response to defoliation often bears a lag of one or more years. This project tackles these issues directly by proposing a multi-proxy approach aiming at improving tree-ring reconstructions of insect outbreaks. Tree rings will be investigated to study radial variations of tree-ring width, wood anatomy, wood density, and wood chemistry. While dendrochronologists have long relied on tree-ring width variations to track the signal induced by climate, geomorphic and ecological processes, they have scarcely exploited the potential of other proxies and rarely used them in combination. The most advanced studies that have embraced these possibilities are owed to dendroclimatologists. The core of this research therefore lies in the use of multiple wood traits to provide answers to the above mentioned dendroecological questions. Two conifer tree species from British Columbia and their respective pests are within the scope of this study: the mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins), a cambium feeder, on lodgepole pine (Pinus contorta Douglas), and the western spruce budworm (WSBW, Choristoneura occidentalis Freeman), a defoliator, on Douglas-fir (Pseudotsuga menziesii Franco). It is hypothesized that insect outbreak disturbance in the form of bark beetle or defoliation events results in abrupt significant structural differences between the wood formed prior to and after the insect attack. Based on pioneering tree-ring research on insect outbreaks, there are great prospects that the variations of wood traits be proven useful for differentiating MPB scars from fire scars and for identifying WSBW defoliation events, possibly with higher temporal resolution. The study of multiple wood traits (proxies) will help gain an understanding of the influence of insect outbreak disturbance on wood formation and tree physiological processes, a prerequisite for improving the detection and dating of events in tree-ring series. (...)
Das Projekt "Recrystallization regimes in an ice sheet - Towards a microstructure-based law of ice" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen durchgeführt. A detailed understanding of the dynamics of polar ice sheets is essential for an accurate climate reconstruction and for the prediction of sea-level fluctuations. Today, the required simulations of ice movement are based on general, empirical material properties of ice. A more accurate description of these properties has to be extracted from the ice micro-structure over the entire ice sheet. This project will provide the necessary data-set for a quantitative parameterization of the entire grain boundary network based on microscopic image sequence analysis. Owning to the complexity and scope of the image data, specific and efficient methods of digital image processing (DIP) have to be developed and verified. Initially, the DIP methodology will be applied to the entire length of the East Antarctic EDML ice core, where the main emphasis will be the data reduction with regard to geometric parameters of grains and the evolution of grain boundaries. One goal is to document the extend to which the depth profiles of these micro-structural parameters are coupled with profiles of tracers and climate proxies in ice cores. The variability of subgrain boundaries with regard to the change of dislocation density represents a first indications of the depth dependence of ice viscosity and thus the rate of deformation. In this project, we will perform a semi-quantitative analysis of this aspect of micro-structural influence on ice dynamics.
Das Projekt "Sub project: Quantitative Reconstruction of the Neogene East and West Antarctic Ice Sheet History from Drift Sediments (ODP Leg 178 and Leg 188): A Synthesis" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt. The proposed synthesis project aims to quantify the Antarctic ice sheet history of the last 10 Ma. With new statistical tools we will isolate and quantify the 'ice factor' in fine-fraction grain-size distribution data from Antarctic deep-sea drift deposits. In our preparatory work we showed that the sedimentary Antarctic drift bodies are continuous ice archives with a direct link in their built-up history at the continental rise to ice advances to the shelf break. Quantification of the ice volume is therefore possible, since the relative ice-cover to - volume ratio is known from models. In a four step approach we will complete the existing sample collection of Site 1095, increase its time resolution and analyse the recovered data sets with the end-member modeling method. Second step is the validation of the local data set to a regional scale by incorporating samples of a control Site (Site 1101) on a nearby drift. Thirdly we will prepare and analyse samples from a E-Antarctic drift (Site 1165) for a in-depth E-W ice sheet history comparision. During the synthesis phase of the project the new proximal data set will be correlated to a new global isotope -Ca/Mg based ice volume record contributed by our cooperation partners. These are three important reasons to start with the proposed research now: High social relevance of the expected data..., free access to the samples since the one year ODP moratorium for both ODP legs has passed, and the availability of abundant ancillary data from other working groups.
Das Projekt "Establishment and exploration of a gas ion source for micro-scale radiocarbon dating of glaciers and groundwater" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Recent progress in the operation of CO2 gas ion sources for accelerator mass spectrometer (AMS) 14C analysis on microgram-size samples opens a wide range of new applications in dating studies, e.g. for environmental and archeological applications. This proposal aims at implementing a gas ion source at the AMS system MICADAS at the Klaus-Tschira Laboratory of the Curt-Engelhorn-Zentrum für Archäometrie (CEZA) in Mannheim and to use this new capability for cutting-edge applications in environmental studies, namely the dating of small amounts of organic carbon contained in glacier ice and of specific organic compounds in ground water. Cold glaciers hold unique records on past climate and atmospheric composition. Mid-latitude ice cores furthermore enable reconstructions of recent ice chemistry changes, but cannot be dated by stratigraphic methods. For such ice bodies, only radiometric dating based on 14C analysis of organic matter contained in the ice matrix presently offers a reasonable dating potential in the late Holocene and beyond. The challenge of this approach lies in the very restricted availability of this matter, but the ability to analyse microgram samples of organic carbon from ice via a gas ion source should now enable reliable 14C dating of ice. Ground water constitutes an important water resource worldwide, especially in semi-arid regions, and in addition constitutes a useful climate archive. Dating of ground water by 14C in the dissolved inorganic carbon (DIC) is standard but problematic due to the complex carbonate geochemistry. Dating of ground water based on dissolved organic carbon (DOC) has been attempted with mixed success, but now the new analytical developments enable compound-specific 14C analyses of the various DOC components, offering the chance to identify compounds suitable for dating. This project is based on the extensive experience of the collaborating scientists in 14C analytics and applications as well as in the use of glacier ice and ground water as archives, including the development and application of 14C dating methods for these systems. It will establish 14C-measurements at the MICADAS AMS of the CEZA via a gas ion source on a routine base to analyse CO2-samples in the range of 5 to 40 microgram C at a precision down to 0,5 Prozent. By improving existing sample preparation techniques for glacier ice samples, reliable 14C values of the particulate and dissolved organic fractions from small (some 100 g) ice samples shall be obtained. This capability will be applied to constrain ages of cold, sedimentary glaciers as well as of small scale, cold Alpine congelation ice bodies. The project will further develop and test the tools required for micro-scale, compound-specific radiocarbon dating of ground water via its organic fraction. For this purpose, ground water samples from the Upper Rhine Graben area will be analysed, where extensive isotopic data, including DIC 14C values, are available for comparison.
Das Projekt "SINCOS: Sinking Coasts - Geosphere, Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea - Part 1.4: Changing sea levels and (semi)terrestrial landscape development in the Baltic Sea coastral area, with special attention to the role of the Darss Sill" wird vom Umweltbundesamt gefördert und von Ernst-Moritz-Arndt-Universität Greifswald, Institut für Botanik und Landschaftsökologie, Lehrstuhl für Landschaftsökologie und Ökosystemdynamik durchgeführt. The research unit SINCOS, established by the Deutsche Forschungsgemeinschaft, has been started in September 2002. The general target is the development of a model of the relation between geo-system, eco-system, climate and socio-economic system for sinking coasts of tideless seas to be developed as an example for the southern Baltic Sea since the Atlantikum. Geoscientists (geologists, geomorphologists, geodesists), biologists (palaeobotanists, palaezoologists), climate researchers and archaeologists will collaborate in order to investigate the cause and effect relation between driving forces (climatic and geological processes) and the response of the natural and social environment in the coastal areas of a transgressive sea. The reconstruction of the Litorina transgression west and east of the Darss sill structure plays the central role. Seven projects under the roof of SINCOS will deal with the acquisition and interpretation of proxy-data in order to reconstruct the history of the southwestern Baltic Sea since 8.000 calendar years BC. In the frame of two projects data will be integrated and models will be developed that mirror the processes of interrelation of different spheres to be investigated. Depending on the varying degree of quantification between measurable variables and qualitative observations models will differ between statistical data exploration and deterministic differential equations. A 4D GIS plays the central role in modelling and data integration. Results will be presented as time-dependent regionalizations of geo-, eco-, and socio-economical parameters. Simulations of future relative sea level change scenarios based on models developed are planned.
Das Projekt "Late-Glacial and Holocene vegetational stability of southern South America" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung für Palynologie und Klimadynamik durchgeführt. This project focuses on the long-term stability (or otherwise) of vegetation, based on a series of multi-proxy records in southern South America. We will build a network of sites suitable for high-resolution reconstructions of changes in vegetation since the Last Glacial Maximum, and use these to test a null hypothesis that changes in vegetation over the past 14,000 years are driven by internal dynamics rather than external forcing factors. The extent to which the null hypothesis can be falsified will reveal the degree to which we can expect to be able to predict how vegetation is affected by external events, including future climate change. The southern fringes of the South American landmass provide a rare opportunity to examine the development of moorland vegetation with sparse tree cover in a wet, cool temperate climate of the Southern Hemisphere. We present a record of changes in vegetation over the past 17,000 years, from a lake in extreme southern Chile (Isla Santa Inés, Magallanes region, 53°38.97S; 72°25.24W; Fontana, Bennett 2012: The Holocene), where human influence on vegetation is negligible. The western archipelago of Tierra del Fuego remained treeless for most of the Lateglacial period. Nothofagus may have survived the last glacial maximum at the eastern edge of the Magellan glaciers from where it spread southwestwards and established in the region at around 10,500 cal. yr BP. Nothofagus antarctica was likely the earlier colonizing tree in the western islands, followed shortly after by Nothofagus betuloides. At 9000 cal. yr BP moorland communities expanded at the expense of Nothofagus woodland. Simultaneously, Nothofagus species shifted to dominance of the evergreen Nothofagus betuloides and the Magellanic rain forest established in the region. Rapid and drastic vegetation changes occurred at 5200 cal. yr BP, after the Mt Burney MB2 eruption, including the expansion and establishment of Pilgerodendron uviferum and the development of mixed Nothofagus-Pilgerodendron-Drimys woodland. Scattered populations of Nothofagus, as they occur today in westernmost Tierra del Fuego may be a good analogue for Nothofagus populations during the Lateglacial in eastern sites. Climate, dispersal barriers and/or fire disturbance may have played a role controlling the postglacial spread of Nothofagus. Climate change during the Lateglacial and early Holocene was a prerequisite for the expansion of Nothofagus populations and may have controlled it at many sites in Tierra del Fuego. The delayed arrival at the site, with respect to the Holocene warming, may be due to dispersal barriers and/or fire disturbance at eastern sites, reducing the size of the source populations. The retreat of Nothofagus woodland after 9000 cal. yr BP may be due to competitive interactions with bog communities. Volcanic disturbance had a positive influence on the expansion of Pilgerodendron uviferum and facilitated the development of mixed Nothofagus-Pilgerodendron-Drimys woodland.