API src

Found 927 results.

Related terms

ALKIS Bodenschätzungskarte Hamburg

Alle landwirtschaftlich nutzbaren Flächen unterliegen aus Gründen einer einheitlichen Besteuerung der Bodenschätzung. Die Ergebnisse der Bodenschätzung werden im ALKIS Liegenschaftskataster geführt. Um den Bezug zum Flurstücksbestand herzustellen, ist eine Darstellung der Bodenschätzungswerte auf den Daten des Amtlichen Liegenschaftskatasters im Maßstab 1:500 - 1:2000 sinnvoll. Skalierung Min/Max nur bei digitalem Kartenbestand. Erfassungsgrad: Analog: 100% Digital: 100% (ca. 1520 Halbblätter)

Wasserhaushalt Hamburg

Rasterkarten zum Wasserhaushalt, bzw. zur Grundwasserneubildung, berechnet mit mGROWA (FZ Jülich, 2021). Im Webdienst werden 6 Layer gezeigt: - Grundwasserneubildung des hydrolog. Jahres 2019 [Min] - Grundwasserneubildung des hydrolog. Jahres 2008 [Max] - mittlere jährliche Grundwasserneubildung (1991 - 2019) - mittlere jährliche Grundwasserneubildung (1961 - 1990, Klimareferenzperiode) - Direktabfluss Mittlere Rate (1991-2020) - Tatsächliche Verdunstung Mittlere Rate (1991-2020) Beschreibung: Etwa ein Viertel des Niederschlags gelangt in Hamburg über den Boden ins Grundwasser und bildet damit einen erheblichen Anteil unserer täglichen Wasserversorgung und ist ökologische Grundlage für die Vegetation und den Boden als Wasserspeicher. Der übrige Niederschlag wird im Wesentlichen durch Verdunstung und Abfluss ins Sielnetz und in die Gewässer bestimmt. Aktuell werden pro Jahr bei durchschnittlichen Niederschlägen (etwa 770 mm pro Jahr) 136 Millionen Kubikmeter (m³) Grundwasser auf Hamburger Gebiet neu gebildet. Im Trockenjahr 2019 waren es nur 75 Millionen m³, was sich in stark fallenden Grundwasserständen, fehlender Bodenfeuchte und sich durch teilweises Trockenfallen von Gewässern für Tier und Pflanze als Trockenstress auswirkte. Auf die Beobachtung der Entwicklung der Grundwasserneubildung kommt deshalb in Zeiten des Klimawandels besondere Bedeutung zu. Neben klimatischen Veränderungen ist deshalb ein ausgefeiltes Flächen- und Ressourcenmanagement nötig, um der wachsenden urbanen Versiegelung und dem steigenden Wasserverbrauch mit Strategien und Maßnahmen hin zu einem naturnahen Wasserhaushalt entgegenzuwirken. Datengrundlagen und Methodik: Grundlage für die Berechnung und Darstellung von flächen- und zeitlich differenzierten Rasterkarten der verschiedenen Wasserhaushaltskomponenten ist das rasterzellenbasierte Wasserhaushaltsmodell mGROWA des Forschungszentrums Jülich. In mGROWA wurden zunächst standortbezogen auf Basis der jeweiligen Niederschlagsmengen und klimatischen Einflussgrößen die tatsächliche Verdunstung und der Gesamtabfluss in täglicher Auflösung mit einer Zellengröße von 25 x 25 m berechnet. Die berechneten Tageswerte wurden nachfolgend auf langjährig, jährliche und monatliche Zeiträume aggregiert. Danach wurde der Gesamtabfluss auf Basis der Standorteigenschaften in verschiedene Abflusskomponenten aufgeteilt. In der Datenzusammenstellung sind neben den Rasterkarten der potentiellen und tatsächlichen Verdunstung, des Gesamtabflusses und der Standorteigenschaften die Rasterkarten der Abflusskomponenten urbaner Direktabfluss, Sickerwasserrate, Zwischen- und Dränageabflüsse, sowie letztendlich die Grundwasserneubildung enthalten. Im Folgenden dargestellt werden auszugsweise die Karten zum mittleren langjährigen Mittel 1961-1990 (Klimareferenzperiode) und 1991-2019, das Nassjahr 2008 mit sehr großer und das Trockenjahr 2019 mit sehr geringer Neubildung.

Bodenkühlleistungskarte Hamburg

Bodenkühlleistungskarte Stand 2021 Die Karte zeigt die Kühlleistung des Bodens in den Sommermonaten, unterteilt in drei Klassen. Die Bodenkühlleistungskarte ist ein Baustein für die Hitzevorsorge im Transformationspfad Klimaanpassung des Hamburger Klimaplans. Maßstab 1 : 25 000

API des Data Cubes des Umweltbundesamtes

Mit den Daten zur Umwelt stellt das UBA ein großes Angebot an aktuellen Daten zum Zustand der Umwelt bereit. Ein neues System – der UBA Data Cube – verbessert die Nutzbarkeit dieser Daten. Die Schnittstelle (API) dient zum programmatischen Abruf der Daten aus dem Data Cube des Umweltbundesamtes.

Fahrdynamische Modellierung zur Systemidentifikation mithilfe Künstlicher Intelligenz

Das Projekt zielt darauf ab, die Fahrdynamik eines Schiffs aus Fahrtaufzeichnungen zu charakterisieren und abzuleiten. Im nächsten Schritt wird für das individuelle Schiff ein passender Satz an Koeffizienten für ein Manövriermodell in der Schiffsführungssimulation generiert. Dazu bedarf es der Unterstützung durch Verfahren des maschinellen Lernens. Aufgabenstellung und Ziel Schiffsführungssimulationen für wasserbauliche Maßnahmen und/oder zur Festlegung schifffahrtspolizeilicher Regelungen an den Wasserstraßen erfordern im Vergleich zu Simulationen für Trainings- und Ausbildungszwecke eine höhere Präzision und Detailtiefe der zugrundeliegenden Daten. Das betrifft neben den Umweltdaten, Seekarten, Peilungen, Wetterbedingungen und Tideströmungen insbesondere die Fahrdynamik der zu untersuchenden Schiffe. In den meisten Fällen sind die verfügbaren fahrdynamischen Daten und Informationen nicht umfangreich oder genau genug, um scharfe Aussagen zu wasserbaulichen Maßnahmen oder schifffahrtspolizeilichen Regelungen treffen zu können. Im Sinne der Vorlaufforschung sollen Techniken und Möglichkeiten geschaffen werden, die Fahrdynamik des zu untersuchenden Schiffs oder Schiffstyps mit höherer Genauigkeit und in kürzerer Zeit als bisher zu generieren. Daher wird ein Verfahren entwickelt, das die Koeffizienten der Fahrdynamik in der Schiffsführungssimulation aus Aufzeichnungen einzelner realer Fahrten des jeweiligen Schiffs ermittelt. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Aussageschärfe von Schiffsführungssimulationen zur Überprüfung wasserbaulicher Maßnahmen auf nautische Belange und für wasserpolizeiliche Regelungen wird verbessert. Zusätzlich kann erwartet werden, dass die Akzeptanz der Untersuchungsergebnisse aus einer Schiffsführungssimulation erhöht wird, indem die simulierte Fahrdynamik auf der des realen Schiffes beruht, das in der jeweiligen Schiffsführungssimulation gefahren wird. Untersuchungsmethoden Die Möglichkeiten zur Erstellung und Kalibrierung der Fahrdynamik im Schiffsführungssimulator wird erweitert. Das erfolgt auf Grundlage von Daten und Messwerten, die aus dem Forschungsprojekt ManoevIdent zur Verfügung stehen. Die Erweiterung wird zunächst am See-Schiffsführungssimulator der BAW eingerichtet und getestet, sodass diese Erweiterungen zuverlässig an Seefahrtschulen und Trainingszentren mit einem Schiffsführungssimulator ANS6000 von Rheinmetall eingesetzt werden können.

Hydraulisch und ökologisch definierte Auengrenzen als Basis für die Entwicklung eines integrierten Ansatzes zur Quantifizierung von Ökosystemleistungen in Auen auf Landschaftsebene

Ziel des vorgeschlagenen Projektes ist die Entwicklung eines integrierten mesoskaligen Ansatzes zur Quantifizierung von neun Ökosystemleistungen (ÖSL) in Auen. Unter Berücksichtigung von Hydraulik und Ökologie werden Wirkungsgrenzen definiert. Diese ermöglichen eine Abgrenzung der Aue nach ihrer Funktionsfähigkeit in Bezug auf die Bereitstellung von ÖSL, welche für den Erhalt natürlicher Lebensgrundlagen bedeutend sind. Trotz des Wissens um die ökologische Bedeutung und die hohe Gefährdung von Auen weltweit findet eine Verschlechterung des Auenzustands weiterhin statt. Dies reduziert auch die Bereitstellung von ÖSL von Auen in unbekanntem Maß. Grund hierfür ist ein fehlendes Verständnis der Interaktionen zwischen den natürlichen Prozessen und ÖSL, den anthropogenen Einflüssen sowie dem Auenzustand. Des Weiteren werden in Auen bereitgestellte ÖSL bei der Kostenberechnung von Maßnahmen vernachlässigt, da ein integrierter übertragbarer Ansatz zur Ermittlung der ÖSL auf der relevanten räumlichen Skala, der Landschaftsebene, fehlt. Die Herausforderungen in der Ökosystemleistungsforschung liegen hauptsächlich in der Vielfalt von nicht abgestimmten Definitionen, Begrifflichkeiten und Indikatoren. Die Skalenproblematik wird zudem bei der Betrachtung der Auengrenzen als räumliche Basis deutlich. Mit der Entwicklung einer übertragbaren Methode wird in diesem Projekt erstmalig ein umfangreiches Spektrum an ÖSL (klimatische, hydrologische Leistungen, Wasserqualität und Biodiversität, Produktion von Lebensmitteln, Baumaterialien und Energie, kulturelle Leistungen, Schutz vor Naturgefahren) unter Berücksichtigung des Auenzustands in Deutschland integriert. Als räumliche Basis der Auenabgrenzung dienen die Überschwemmungsflächen häufiger Hochwasser gemäß öffentlich zugänglicher Hochwassergefahrenkarten. Die Eignung dieser rein hydraulisch bestimmten Grenzen wird durch umfangreiche ökologische Daten anderer Forschungsinstitute (Bundesanstalt für Gewässerkunde (Vegetation) und Universität Duisburg-Essen (Laufkäfer)) erstmals untersucht. Neue Indikatoren werden für jede der neun ÖSL auf der Basis von Geoinformationen und Literaturrecherchen entwickelt. Mittels Metaanalysen wird die Übertragbarkeit von ökonomischen Faustzahlen für einen Wertetransfer überprüft. Ergebnis ist eine erstmalige Berechnung des ökonomischen Gesamtwertes der Auen auf Landschaftsebene, um die Leistungen von Auen, ihren Erhalt bzw. ihre Wiederherstellung umfassender als bisher zu bewerten. Anhand von zehn bereits durchgeführten Auenrenaturierungsprojekten wird dieser Ansatz mittels einer Kosten-Nutzen-Rechnung validiert. Dieser neue integrierte Ansatz ist interdisziplinär ausgerichtet, um der Komplexität von Auen und den von ihnen erbrachten ÖSL gerecht zu werden. Mit der Inwertsetzung bieten sich breite thematische Anknüpfungspunkte. So erhalten u.a. Biologen und Hydrologen, Geowissen- und Volkswirtschaftler eine vereinheitlichte Datenbasis bisher dezentral vorliegender Informationen.

Systematische Untersuchung der biologischen Vielfalt des Grünen Bands Deutschland für die Analyse der Biotopverbund- und Klimakorridorfunktion, die Ableitung eines Management- und Monitoringkonzeptes sowie für die Bewertung des Außergewöhnlichen Universellen Wertes (AUW) im Zuge der UNESCO-Welterbenominierung

Landesuntersuchungsprogramm Deponie Ihlenberg - Laboruntersuchungen

Das vom Land geförderte Untersuchungsprogramm an der Deponie Ihlenberg (ehemals Schönberg) umfaßt die geochemischen und hydrochemischen Daten und Ihre Bewertung aus der Landesuntersuchung (keine Daten der (Eigen-)-Überwachung). Hierbei werden im LUNG bodenanalytische Daten erhoben und sowie Fremddaten verarbeitet (Meß-Rohdaten, kombinierte Daten, Meßreihen, statistische Aussagen über Daten). Sie sind verteilt abgelegt in Laborbüchern, Rohdatenfiles der Meßgeräte, Spreadsheet-Daten. Es handelt sich um bodenchemische und bodenphysikalische Daten. Die Daten sind in eigenen und fremden Berichten ausgewertet und bewertet (ggf. Zwischenberichten) und abgelegt.

Hydrochemische Daten

Hydrochemische Daten sind überwiegend im Labor des LUNG M-V erhobene Daten (Meß-Rohdaten, kombinierte Daten, Meßreihen, statistische Aussagen über Daten). Sie sind abzugrenzen von den Daten zu Bodenlösungen. Sie sind verteilt abgelegt in Laborbüchern, Rohdatenfiles der Meßgeräte, Spreadsheet-Daten. Die Strukturen der Sachdaten der (übergeordneten) Datensätze sind aus den hier vorausgehenden Anforderungen und der Meßpraxis bestimmt.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Überwindung des Zeitskalenproblems von Klima- und Vegetationseinflüssen auf die Denudation: Ein Lösungsansatz mittels gekoppelter Modellierung

Dieser Antrag stellt die Weiterführung unserer Arbeiten aus EarthShape Phase 1 dar. In den vorangegangenen Arbeiten wurde der Einfluss von Klima- und Vegetationsveränderungen seit dem letzten glazialen Maximum bis heute auf die Topographie und Erosionsraten in den EarthShape Untersuchungsgebieten untersucht. Unsere Ergebnisse zeigen signifikante Änderungen von Vegetation und Erosionsraten während der letzten 21000 Jahre, sowie nicht-lineare Effekte und, von Vegetationsveränderungen abhängige, Schwellenwerte von Erosionsraten. Diese Ergebnisse, sowie die großskaligen Veränderungen von Umweltbedingungen und Tektonik des Känozoikums, motivieren uns in Phase 2, über die größeren Zeitskalen (Millionen Jahre) des Känozoikums zu integrieren um so die Einflüsse der ausgeprägten Klimaänderungen auf die Vegetation und davon bedingten Verwitterungs- und Erosionsraten in der Küstenkordillere Chiles zu untersuchen. Unsere übergreifende Hypothese ist: Ein starkes Abnehmen der CO2-Konzentration der Atmosphäre und ein Klimaentwicklung hin zu kälteren und trockeneren Bedingungen seit dem Übergang vom Eozän zum Oligozän haben (1) zu einer substantiellen Verringerung der Planzenproduktivität und Vegetationsbedeckung geführt. Diese Vegetationsveränderungen haben wiederum (2) zu deutlich veränderten Erosions- und Pflanzen-bedingten Verwitterungsraten geführt. Infolgedessen könnte die rezente Topographie substantiell durch die Vegetationsdynamik der Vergangenheit bedingt sein. Unsere Untersuchung und Bewertung dieser Hypothese baut auf unseren eigenen Arbeiten und den technischen Fortschritten von Partnern aus Phase 1 auf. Wir werden ein gekoppeltes Modellsystem, bestehend aus dem dynamisches Vegetationsmodell LPJ-GUESS und dem Oberflächenprozessmodell LandLab, einsetzen, und es mit Simulationen von Paläo-Klimaänderungen (ECHAM5) der vergangenen 34 Millionen Jahre antreiben. Integraler Bestandteil und neu in unserem Ansatz ist die Verknüpfung des Vegetations- und Oberflächenprozessmodells, um Änderungen der biotischen (pflanzen-bedingten) und abiotischen Verwitterung zu schätzen. Hierzu werden wir: a) quantifizieren, wie dynamische Vegetationsveränderungen die Denudationsraten, Topographie und Tiefenverwitterung beeinflussen; b) bewerten inwiefern von Pflanzen beeinflusste Erosion und Verwitterung von den herrschenden Niederschlagsbedingungen, der Temperatur, und von CO2 Konzentrationen abhängen, und c) pedogene, geochemische, geologische und ökologische Daten aus Phase 1, sowie neue Ergebnisse aus Phase 2 aus anderen Projekten in unser Modellierungskonzept integrieren.

1 2 3 4 591 92 93