API src

Found 2514 results.

Related terms

Felduntersuchung zum Einfluss von HoCHspAnnungsgleichstRomübertraGungs (HGÜ)-Erdkabel auf Böden und landwirtschaftlichen Kulturpflanzen (CHARGE)^Teil 2, Teil 1

Das Energiekonzept der Bundesregierung sieht seit Oktober 2010 einen Energiemix bei der Stromerzeugung für 2050 vor, bei dem der Anteil erneuerbarer Energien auf 80 % gesteigert wird. Bislang sind die deutschen Stromnetze nicht flächendeckend auf den Transport des Stroms aus erneuerbaren Energien ausgelegt. Demzufolge sind große Infrastrukturmaßnahmen geplant, die mit erheblichen Einwirkungen auf das Schutzgut Boden durch die Verlegung der Kabel verbunden sein werden. Neben Veränderungen in der Bodenstruktur führen Erdkabel auch zu einer erheblichen Wärmeabgabe an den umliegenden Boden. Die Zusammenhänge und Auswirkungen auf das Pflanzenwachstum, die Ertragsfähigkeit des Standortes durch alternative bodenschonende Baumaßnahmen sowie mögliche thermische Verluste der Erdkabel sind nur unzulänglich erforscht. Ziel des Projektes ist, statistisch abgesicherte Daten zum Einfluss von Erdkabeltrassen auf landwirtschaftliche Böden und Nutzpflanzen zu erheben und zu evaluieren. Die übergeordneten Ziele fügen sich in die wissenschaftlichen, wirtschaftlichen, gesellschaftlichen und politischen Ziele zum Ausbau erneuerbarer Energien in Deutschland und leisten einen wesentlichen Erkenntnisgewinn, der durch die angewandten Methoden auf andere Standorte übertragbar ist.

WIN(D)SCHOOL

Zielsetzung: Wie können wir junge Menschen über den Klimawandel aufklären? Wie können wir diese jungen Menschen für das Thema erneuerbare Energien begeistern? Und wie können wir unsere Schülerinnen und Schüler zu beruflichen Möglichkeiten in der Branche verhelfen? Diesen drei Fragen widmet sich das Bildungsprojekt WIN(D)SCHOOL. Um das Ziel der Klimaneutralität bis 2045 zu erreichen, werden die erneuerbaren Energien in den nächsten Jahren eine entscheidende Rolle spielen. Das Ziel ist es, die derzeitige Leistung von 8,5 GW in der deutschen Offshore-Windenergie auf mindestens 30 GW bis 2030 und 40 GW bis 2035 auszubauen. Für diese Ausbauziele werden vor allem qualifizierte Fachkräfte entlang der gesamten Wertschöpfungskette von Nöten sein. Dagegen steht einerseits der gegenwärtige Fachkräftemangel in Deutschland, andererseits die soziale Wirklichkeit in Deutschland. Nach aktuellen Berechnungen zufolge werden allein bis 2050 etwa drei Mal so viele Fachkräfte wie bisher notwendig sein, um den Ausbau von Windenergie in Deutschland voranzutreiben. Die Forschung zeigt uns zudem seit vielen Jahren, dass die Bildungschancen unserer Schülerinnen und Schüler in Deutschland ungleich verteilt sind. Studien zeigen, dass der Bildungserfolg in allen Bildungsbereichen nach wie vor an die sozio-ökonomische Herkunft geknüpft ist. Auch andere Merkmale wie Migrationshintergrund, Geschlecht oder Behinderung spielen dabei eine Rolle. WIN(D)SCHOOL zielt darauf ab, das Interesse von vorrangig Hamburger Stadtteilschülerinnen und -schülern an MINT-Fächern in Schulworkshops zu wecken sowie zu fördern und Möglichkeiten im Arbeitsfeld Offshore-Windenergie aufzuzeigen. Als Bindeglied zwischen Schulen und Unternehmen in der Offshore-Windenergiebranche bietet die Stiftung OFFSHORE-WINDENERGIE am Ende der Workshops konkrete Kontakte zu Energieunternehmen oder sogar Universitäten in Hamburg und Norddeutschland an, um dort eine Ausbildung oder ein Studium aufzunehmen. Aufgrund gemachter Erfahrungen, soll ein besonderes Augenmerk auf Jugendliche mit Migrationshintergrund gelegt werden. Ein geschlechterneutrales Vorgehen soll im Vordergrund stehen, um den Anteil von weiblichen Berufsanfängerinnen in technischen Berufen zu erhöhen.

Using Space Technology to Protect the Planet from Above

Die Rolle von Pilzen bei der Astreinigung von Laubbäumen

Wertholzproduktion mit heimischen Läubbäumen basiert auf zwei grundlegenden, preisbestimmenden Rundholzeigenschaften: Astreinheit und Dimension. Zur Steuerung beider Wachstumsabläufe bedient sich die Waldwachstumskunde dazu der Konkurrenzregelung. Die erreichte Astreinigung wird dabei durch Fäulnisprozesse (Pilze) beschleunigt. Das Dickenwachstum des Baumschaftes sorgt in einem zweiten Schritt für eine Überwallung des abgestorbenen und zersetzten Astes. Im vorliegenden Projekt wird die Rolle der Pilze als 'nützliche Lebewesen' bei der Astreinigung aber auch als 'potentielle Fäuleerreger' nach Abschluss der Überwallung untersucht. Am Beispiel von Esche und Bergahorn wird das Potenzial von Pilzen untersucht, nach Abschluss der Überwallung eines abgestorbenen Astes im Stamm die Schutzbarrieren des Baumes zu überwinden und Holz zu zersetzen. Das Risiko des Eindringens von Pilzen in Wertholz wird dabei anhand von Ästen verschiedener Dimension, Höhe am Schaft und Überwallungsdauer abgeschätzt. Entscheidungshilfen für die Steuerung von Astreinigung und Dimensionierung sollen dabei unter diesem Aspekt optimiert werden.

Eine Webanwendung zur Ermittlung und Vermeidung des Eintrags von Pflanzenschutzmitteln in die Umwelt

Zielsetzung und Anlass des Vorhabens: Viele Studien zeigen, dass chemische Pflanzenschutzmittel (PSM) auch über weite Distanzen transportiert werden können und so die Umwelt belasten. Auch entlegene Schutzgebiete sind davon betroffen und werden hierdurch beeinträchtigt, was insbesondere Insektenpopulationen nachhaltig schädigt. Dies konnte durch ein deutschlandweites Kleingewässermonitoring (KgM) bestätigt werden (Liess et al., 2021). Bereits im Projekt PuMa 1.0 (Laufzeit 1.7.2021 - 30.6.2023) entwickelten die Projektpartner eine Webanwendung, mit der auf einer interaktiven Karte u.a. potenzielle Quellen von PSM identifiziert, das ökologische Risiko eines vorhergesagten PSM-Eintrags bewertet und PSM-Reduktionsszenarien simuliert werden können. Mit dem Folgeprojekt PuMa 2.0 sollen die zurzeit noch bestehenden Limitierungen dieser Webanwendung identifiziert und überwunden werden. Das Ziel ist die Weiterentwicklung der vorhandenen Webapplikation zu einer offenen, digitalen Plattform für Umweltforschung, die sich in das bestehende IT-Umfeld von Anwendern aus Umweltforschung, Landwirtschaft, Verwaltung und Umweltschutz integrieren lässt. Wissenschaftliche Ziele des Projekts PuMa 2.0 bestehen u.a. in der Quantifizierung des Oberflächenabfluss und der ökotoxikologischen Bewertung eintragsmindernder Maßnahmen. Ziele im Bereich der Softwareentwicklung bestehen u.a. in der Umsetzung mehrerer Schnittstellen für den Import und Export von Schlag- und PSM-Anwendungsdaten. Sowie der Entwicklung von Programmierschnittstellen zur Integration weiterer Expositionsmodelle und Auswertungen zur ökotoxikologischen Risikobewertung.

Ein zweites Leben für Solarmodule durch einen intelligenten Testprozess

Zielsetzung: Für die Energiewende werden zahlreiche Solarmodule produziert und installiert. Die jährliche Abfallmenge von Solarmodulen wird allein in Deutschland für das Jahr 2030 über 150.000 Tonnen (ca. 7,5 Millionen Solarmodule) betragen und steigt in den kommenden Jahren weiter exponentiell an. Gemäß Circusol, einem Konsortium aus 15 Institutionen, ist die Hälfte des Abfallstroms an Solarmodulen für den Wiedereinsatz verwendbar, also 2nd-Life fähig. Aktuell werden diese 2nd-Life fähigen Solarmodule jedoch nicht ausreichend geprüft, sodass sie dem Recycling zugeführt werden. Durch den Einsatz unseres automatisierten und intelligenten Prüfsystems können wir die Solarmodule vor einer frühzeitigen Entsorgung bewahren. Durch die Förderung der Better Sol GmbH durch das DBU Green Startup Programm haben wir die Möglichkeit innerhalb des 24-monatigen Förderzeitraums unseren Teststand zum automatisierten Testen von Solarmodulen zu entwickeln, aufzubauen und in Betrieb zu nehmen. So können wir erstmalig Testdaten generieren, mithilfe dessen der Machine Learning Algorithmus angelernt und optimiert werden kann. So können wir 2nd-Life Solarmodule mit garantierter Leistung und einer Leistungsprognose zurück in den Markt bringen und das volle Potenzial der Module ausschöpfen. Für den Vertrieb der Solarmodule soll ein Vertriebsprozess und eine Marketingstrategie aufgebaut werden. Dadurch steigt die Sichtbarkeit und die Aufklärung in der Gesellschaft hinsichtlich der Ressourcenverschwendung in der Solarindustrie. Durch die Verlängerung der Lebensdauer von Solarmodulen werden endliche und kritische Ressourcen, wie Silizium oder Silber gespart. Das vermeidet wiederrum CO2-Emissionen und Treibhausgase, da die Module bereits produziert wurden. Die prognostizierte Abfallmenge für 2030 entspricht 150.000 Tonnen an Solarmodulen. Für die Herstellung dieser Module werden 1,2 Millionen Tonnen CO2-Äquivalente emittiert. Durch die Wiederverwendung kann die Lebensdauer von 50 % der Module verlängert werden, dadurch würden anhand der Zahlen für 2030 ca. 0,6 Millionen Tonnen CO2-Äquivalente eingespart werden. Mit unseren geprüften, wiederverwendeten 2nd-Life Solarmodulen schaffen wir einen Zugang zu sauberer, bezahlbarer Energie, wodurch nachhaltige Städte und Gemeinden geschaffen werden. Durch unser Angebot fördern wir einen nachhaltigen Konsum und eine nachhaltige Erzeugung von Solarstrom. Gleichzeitig vermeiden wir die Verschwendung von Ressourcen.

Aufbau der Saechsischen Akademie fuer Natur und Umwelt

ITMS Integriertes Treibhausgas Monitoring System für Deutschland - Modul Q&S

Bewertung des Einflusses von Emissionen und Rueckstaenden auf Umwelt und Gesundheit

Es steht im Interesse der Umweltforschung und Umwelterziehung Vorurteile ueber Belastungen durch Emissionen und Rueckstaende aus Braunkohlekraftwerken kritisch zu hintertragen und an einfachen Modell-Systemen Schad- und Nutzwirkungen von Kraftwerksreststoffen (Braunkohlenasche und Rauchgasgips) zu erfassen (Ziel). Es wird davon ausgegangen, dass bei einer richtigen Verwendung (Recycling) durchaus positive Wirkungen auf Umwelt und Gesundheit zu erwarten sind (Hypothese). Als Ergebnis ist festzustellen, dass mit einer Kombination von Braunkohlenasche und Rauchgasgips eine Verbesserung von sauren Boeden und des Pflanzenwachstums, sowie eine Behebung von Mangelsituationen an Spurenelementen (Bor, Selen, Molybdaen, u.a.) bei sachgerechter Anwendung moeglich ist (Ergebnis).

Projekt Schadstoffbeherrschung in der Umwelt (PSU)

Projektorganisation fuer die Planung, Durchfuehrung und Koordination aller Umweltaktivitaeten des Kernforschungszentrums Karlsruhe auf den Gebieten Biologie, Kommunale Abfallwirtschaft, Wasser und Boden, Klimaforschung, Schadstoffverhalten in der Atmosphaere, Systemanalyse und Umweltanalytik, emissionsmindernde Verfahren. Die Projektleitung ist Anlaufstelle fuer alle das Projekt betreffenden organisatorischen Fragen und vertritt dessen Belange nach aussen. Die einzelnen Vorhaben des Projektes sind bei den durchfuehrenden Instituten und Abteilungen des Kernforschungszentrums Karlsruhe beschrieben.

1 2 3 4 5250 251 252