Das Projekt "Fachliche Beratung und Mitarbeit bei der Weiterführung des Umweltmanagementsystems an der TU Dresden" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Professur für Betriebswirtschaftslehre, insbesondere Betriebliche Umweltökonomie durchgeführt. Seit dem 8. Januar 2003 ist die TU Dresden in das EMAS-Verzeichnis bei der IHK Dresden eingetragen und somit die erste technische Universität mit einem validierten Umweltmanagementsystem nach EMAS (Registrierungsurkunde). Die Validierung ist insbesondere auf den erfolgreichen Abschluss des Projektes 'Multiplikatorwirkung und Implementierung des Öko-Audits nach EMAS II in Hochschuleinrichtungen am Beispiel der TU Dresden' zurückzuführen. Mit der Implementierung eines Umweltmanagementsystems ist zwar ein erster Schritt getan, jedoch besteht die Hauptarbeit für die TU Dresden nun, das geschaffene System zu erhalten und weiterzuentwickeln. Für diese Aufgabe wurde ein Umweltmanagementbeauftragter von der Universitätsleitung bestimmt. Dieser ist in der Gruppe Umweltschutz des Dezernates Technik angesiedelt und wird durch eine Umweltkoordinatorin, den Arbeitskreis Öko-Audit, die Arbeitsgruppe Öko-Audit und die Kommission Umwelt, deren Vorsitzende Frau Prof.Dr. Edeltraud Günther ist, tatkräftig unterstützt. Die Professur Betriebliche Umweltökonomie arbeitet in dem Arbeitskreis und der Arbeitsgruppe Öko-Audit mit und steht dem Umweltmanagementbeauftragten jederzeit für fachliche Beratung zum Umweltmanagement zur Verfügung. Ein wesentlicher Erfolg der TU Dresden auf dem Weg zu einer umweltbewussten Universität ist die Aufnahme in die Umweltallianz Sachsen, die am 08. Juli 2003 stattgefunden hat. Informationen zum Umweltmanagementsystem der TU Dresden sind unter 'http://www.tu-dresden.de/emas' zu finden.
Das Projekt "FuncTional tOOls for Pesticide RIsk assessmeNt and managemenT (FOOTPRINT)" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement durchgeführt. FOOTPRINT aims at developing a suite of three pesticide risk prediction and management tools, for use by three different end-user communities: farmers and extension advisors at the farm scale, water managers at the catchment scale and policy makers/registration authorities at the national/EU scale. The tools will be based on state-of-the-art knowledge of processes, factors and landscape attributes influencing pesticide fate in the environment and will integrate innovative components which will allow users to: i) identify the dominant contamination pathways and sources of pesticide contamination in the landscape; ii) estimate pesticide concentrations in local groundwater resources and surface water abstraction sources; iii) make scientifically-based assessments of how the implementation of mitigation strategies will reduce pesticide contamination of adjacent water resources. The three tools will share the same overall philosophy and underlying science and will therefore provide a coherent and integrated solution to pesticide risk assessment and risk reduction from the scale of the farm to the EU scale. The predictive reliability and usability of the tools will be assessed through a substantial programme of piloting and evaluation tests at the field, farm, catchment and national scales. The tools developed within FOOTPRINT will allow stakeholders to make consistent and robust assessments of the risk of contamination to water bodies at a range of scales relevant to management, mitigation and regulation (farm, catchment and national/EU). They will in particular i) allow pesticide users to assess whether their pesticide practices ensure the protection of local water bodies and, ii) provide site-specific mitigation recommendations. The FOOTPRINT tools are expected to make a direct contribution to the revision of the Directive 91/414/EC, the implementation of the Water Framework Directive and the future Thematic Strategy on the Sustainable Use of Pesticides. Prime Contractor: Bureau de Recherches Géologiques et Minières; Paris; France.
Das Projekt "Reduction, modification and valorisation of sludge (REMOVALS)" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Verfahrenstechnik, Fachgebiet Verfahrenstechnik I durchgeführt. The adoption of the Urban Waste Water Treatment Directive 91/271/EEC imposes the sewage sludge to be subsequently treated so it is expected by 2005 to increase twofold in comparison whit 1992. However, classical incineration to treat this vast amount of sludge must be no longer accepted from an environmental point of view. In addition, the Sewage Sludge Directive 86/278/EEC regulates the uses and properties of stabilised sludge for being either recycled or disposed. Both directives drive specific actions in two complementary ways. Firstly, a deep knowledge of current sludge treatment, such as mesophilic, thermophilic or autothermophilic processes, must be promoted to solve that problem in the UE ambit, taking in account the particular considerations of each treatment facility. In second place, the development of new processes must be supported to open new alternatives that could valorise that waste.The proposal aims at developing strategies for the disposal and reuse of waste sludge. The scope envisages to develop several processes for reducing both amount and toxicity of sludge, with simultaneous transformation into green energy vectors such as methane or hydrogen. In outline, mesophilic and mainly thermophilic and autothermophilic conditions will be deeply explored as classical alternatives for sludge stabilisation, assuring sanitary conditions of the treated sludge. Also, valuable materials will be obtained from sludge, such as activated carbons, which will be used in conventional adsorption processes and in innovative advanced oxidation processes.The main outcomes expected at the end of the projects are guidelines for technology selection in agreement with the geographic, economic and technical characteristics of the sewage plants, demonstration of the feasibility of new applications for the sewage sludge, manufacturing of activated carbon from sludge sewage as innovative recycling of sludge waste, and a deep understanding of the methods involved. Prime Contractor: Universitat Rovira i Virgili, Tarragona, Spain.
Das Projekt "Science-policy inferfacing in support of the Water Framework Directive implementation (SPI-WATER)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Many current water-related RTD projects have already established operational links with practitioners, in several catchments / river basins, which allow the needs of policymakers to be taken into account. However, experience has shown that this interrelationship is not as efficient as it could / should be. Often, RTD results are not easily available to policy oriented implementer (policymakers) and, vice versa, research scientists may lack insight in the needs of policymakers. This project proposes a number of concrete actions to bridge these gaps in communication by developing and implementing a science-policy interface, focusing on setting up a mechanism to enhance the use of RTD results in the Water Framework Directive (WFD) implementation. As a first action, existing science-policy links will be investigated. RTD and LIFE projects that are of direct relevance for the implementation of the WFD will be identified and analysed. The results of these projects will be extracted, translated and synthesised in a way that can efficiently feed the WFD implementation. Secondly, an information system (WISE-RTD Web Portal) will be further developed to cater for an efficient and easy to use tool for dissemination as well as retrieval of RTD results. The Web Portal will be tested in 4 selected river basins to better tune the product to the needs of WFD stakeholders, policymakers and scientists. In parallel, the Web Portal will be disseminated to WFD stakeholders. This dissemination will focus on how to better access and use the RTD results and practical experiences. As third action, this science-policy interfacing of WFD related topics will be extended to non-EU countries taking into account their specific needs. An assessment of recent practices and needs of non-EU countries, together with an in-depth analysis of the operational needs in two Mediterranean pilot river basins, will allow to prepare recommendations for an efficient transfer of knowledge. Prime Contactor; Hydroscan NV; Leuven; Belgium.
Das Projekt "Assessment of human health effects caused by bathing waters (EPIBATHE)" wird vom Umweltbundesamt gefördert und von Weltgesundheitsorganisation durchgeführt. The scientific evidence base to support credible risk assessment for the design of appropriate microbial standards for bathing waters is insufficient. This is particularly true for Mediterranean waters, for new member states and for effects associated with exposure to toxic algal products. This is a pressing problem as Directive 76/160/EEC is currently in the process of amendment by the EU. It is therefore intended to address three questions, namely: a. What is the nature and level of the risk and how does exposure affect risk? b. What level of protection is afforded by the threshold values in Directive 76/160/EEC and CEC (2004)? c. How do the risks vary between fresh and marine waters and does the 1:2 ratio of the faecal indicator threshold values in coastal waters vs freshwaters ensure a comparable level of protection? In the first 12 months, this proposal will (i) complete a literature review and meta-analysis of current epidemiological data derived principally from UK and German studies, (ii) define data gaps restricting the application of credible health-evidence-based policy to bathing water standards outside these regions and (iii) design and agree a suitable research protocol for filling these data gaps. The second twelve months of research (from month 13 to 24) will (iv) implement this protocol and the project will deliver (v) a scientific report of the findings and detailed policy interpretation before the project end, i.e. 36 months following commencement. Prime Contractor: University Wales, University College Aberystwyth; Aberystwyth; Aberystwyth.
Das Projekt "Methodology Development towards a Label for Environmental, Social and Economic Buildings (LENSE)" wird vom Umweltbundesamt gefördert und von Bauphysikbüro Prof. Kornadt und Partner durchgeführt. LEnSE is a research project that responds to the growing need in Europe for assessing a building's sustainability performance. The project draws on the existing knowledge available in Europe on building assessment methodologies. LEnSE aims to develop a truly holistic methodology that addresses the overall, integrating concept of sustainability. The main objective of LEnSE is to develop a methodology for the assessment of the sustainability performance of existing, new and renovated buildings, which is broadly accepted by the European stakeholders involved in sustainable construction. This methodology will allow for future labelling of buildings, in analogy with the Energy Performance Directive. The work should result in increased awareness of the European stakeholders and will allow adequate policy implementation on sustainable construction. The project consists of three main themes. The first theme is the identification and scope of the issues which need to be included in a sustainability assessment. This has to be wide enough to be acceptable and limited enough to be practicable. A broad consensus on these issues will be reached through strategic consultation of the relevant stakeholders. The second theme is the actual development of the assessment methodology. The content of the assessment will be developed for a limited, but representative range of key issues. Guidelines on how to address local variations will be provided. This work will be validated by the development of a prototype tool and tested on case study buildings. The key stakeholders on the European and national level will be highly involved in the development of the methodology, to guarantee a wide acceptance and implementation of the project results. These consultations will include national meetings with stakeholders and trans-national expert workshops. Thematic -stepping stone- publications, will serve as strategic reference and discussion documents for the stakeholder consultation rounds. Prime Contractor: Centre Scientifique et Technique de la Construction; Bruxelles; Belgium.
Das Projekt "Guidelines on Noise Mapping and Action Planning according to Directive 2002/49EC in Hungary" wird vom Umweltbundesamt gefördert und von Lärmkontor GmbH durchgeführt.
Das Projekt "SO2 IN AIR" wird vom Umweltbundesamt gefördert und von Messer-Griesheim GmbH durchgeführt. Community Directive 80/779/EEC specifies maximum permissible levels of sulphur dioxide in the ambient air. Intercomparisons organized by DG XI in support of the implementation of this Directive have shown differences in excess of 10 percent between central laboratories and in excess of 30 percent between network monitors. The aim of the project was to improve the analytical technique and agreement between results. STATUS: In the first intercomparison the values obtained ranged from 78 to 94 nmol/mol. In the final stage the sampling procedure had been improved (dead volume minimised, length of sampling line minimised, sufficient equilibration time). All laboratories agreed to within a range of 4 nmol/mol. Prime Contractor: L'Air Liquide Belge, Schelle, BE.
Das Projekt "Background Criteria for the Identification of Groundwater Thresholds (BRIDGE)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich, Institut für Energieforschung, Systemforschung und Technologische Entwicklung (IEF-STE) GmbH durchgeführt. The Commission proposal of Groundwater Directive COM(2003)550 developed under Article 17 of the Water Framework Directive (2000/60/EC) sets out criteria for the assessment of the chemical status of groundwater, which is based on existing Community quality standards (nitrates, pesticides and biocides) and on the requirement for Member States to identify pollutants and threshold values that are representative of groundwater bodies found as being at risk, in accordance with the analysis of pressures and impacts carried out under the WFD. In the light of the above, the objectives of BRIDGE are: i) to study and gather scientific outputs which could be used to set out criteria for the assessment of the chemical status of groundwater, ii) to derive a plausible general approach, how to structure relevant criteria appropriately with the aim to set representative groundwater threshold values scientifically sound and defined at national river basin district or groundwater body level, iii) to check the applicability and validity by means of case studies at European scale, iv) to undertake additional research studies to complete the available data, v) and to carry out an environmental impact assessment taking into account the economic and social impacts. The project shall be carried out at European level, involving a range of stakeholders and efficiently linking the scientific and policy-making communities. Considering the requirement of the diary of the Groundwater Daughter Directive proposal, which implies that groundwater pollutants and related threshold values should be identified before December 2005 and listed by June 2006, the duration of the project should be 24 months. In that way the proposed research will contribute to provide research elements that will be indispensable for preparing discussions on further steps of the future Groundwater Directive. Prime Contractor: Bureau de Recherches Geologiques et Minieres, Service Analyse et Caracterisation Minerale, Paris FR
Das Projekt "Safe Management of Mining Waste and Waste Facilities (SAFEMANMIN)" wird vom Umweltbundesamt gefördert und von BIUTEC - Biotechnologie- und Umwelttechnologie Forschungs- und Entwicklungsgesellschaft mbH durchgeführt. The project aims at supporting the implementation of the proposed Directive of the European Parliament and of the Council on the management of waste from the extractive industries 2003/0107. The Directive was prepared following several major accidents with a serious impact on the environment, and it has the purpose of ensuring a safer management of the mining waste facilities, so that such accidents will not occur in the future. This project addresses particularly Article 9, which provides for the classification of waste facilities with respect to the possible consequences of an accident, and respectively the Annex II: Characterisation of mining waste and Annex III: Criteria for the classification of waste facilities. The activities of the project are divided into four major work packages as follows: - Preparation of a Methodology for the Characterisation of Mining Waste - Elaboration of a Risk Assessment Methodology for the Classification of Mining Waste Facilities, including Old/Abandoned Mining Waste Facilities - Review of Techniques for the Prevention and Abatement of Pollution Generated by Mining Wastes - Development of a Decision Support Tool for Minimising the Impact of the Mining Industry on the Environment. The Consortium co-ordinated by BIUTEC, Austria, includes universities, research institutes, NGOs and implementing authorities from 8 European countries, both Members of the EU and accession countries. The experts team is highly qualified and has many years of experience and research in this area, so that the best outputs can be obtained. The project will build on the results of other projects carried out in this field, and will relate closely to on-going projects, so that there is no overlap in our activities. In order to provide an effective tool for the potential beneficiaries, the project team will consult with representatives of the stakeholders before the final versions of the outputs are publicly made available on the project web-site.
Origin | Count |
---|---|
Bund | 18 |
Type | Count |
---|---|
Förderprogramm | 18 |
License | Count |
---|---|
offen | 18 |
Language | Count |
---|---|
Deutsch | 6 |
Englisch | 14 |
Resource type | Count |
---|---|
Keine | 15 |
Webseite | 3 |
Topic | Count |
---|---|
Boden | 17 |
Lebewesen & Lebensräume | 14 |
Luft | 13 |
Mensch & Umwelt | 18 |
Wasser | 15 |
Weitere | 18 |