API src

Found 1729 results.

Related terms

Rasterdaten der beobachteten und projizierten Trockentage für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1931-1960 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

Rasterdaten der beobachteten und projizierten Lufttemperatur für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1881-1910 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) - m01.. Monate Januar bis Dezember Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

Rasterdaten der beobachteten und projizierten Starkregentage für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

Potenzieller Zusatzwasserbedarf für den 30-jährigen Zeitraum 2031-2060, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2031-2060 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Potenzieller Zusatzwasserbedarf für den 30-jährigen Zeitraum 2031-2060, Klimaschutz-Szenario (RCP2.6)

Die Karte zeigt den mittleren potenziellen Zusatzwasserbedarf (in mm) für den 30-jährigen Zeitraum 2031-2060 unter dem „Klimaschutz“-Szenario (RCP2.6). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Regulation der Phosphor Aufnahme, Verteilung, Speicherung und Mobilisierung über interne Signale und Umweltfaktoren in Buchen und Pappeln

Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Regulation der Phosphor Aufnahme, Verteilung, Speicherung und Mobilisierung über interne Signale und Umweltfaktoren in Buchen und Pappeln" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie.Phosphor (P) ist einer von fünf essentiellen Makronährstoffen für Wachstum und Entwicklung von Pflanzen. Seine geringe Verfügbarkeit in vielen Waldböden macht eine effiziente Aufnahme, Verwendung und Verteilung erforderlich. Diese Prozesse müssen zudem an den sich während der Vegetationsperiode ändernden Bedarf angepasst werden. Ziel des vorliegenden Projekts ist es, die P Akquisition mykorrhizierter und nicht-mykorrhizierter Baumwurzeln zu charakterisieren (Km, vmax, Temperatur und pH Abhängigkeit) und die Regulation der P Akquisition durch externe und intrinsische Faktoren aufzuklären. Dabei stehen (a) die Interaktion der Aufnahme von Pi und Porg, (b) die Konkurrenz zwischen Altbestand und Naturverjüngung und (c) die Konkurrenz zwischen Wurzeln und Mikroben im Vordergrund von aufeinander abgestimmten Laborversuchen unter kontrollierten Bedingungen und Freilanduntersuchungen. Unter kontrollierten Bedingungen sollen Aufnahme und Xylembeladung radioaktiv markierter P Verbindungen an abgeschnittenen Wurzeln mit der Pitman-Kammertechnik analysiert werden; im Freiland soll die Aufnahme ausgegrabener Wurzeln über die Akkumulation von stabilen Isotopen oder über die 'Depletion'-Technik durch Inkubation in künstlichen Bodenlösungen bestimmt werden. Die Regulation der P Aufnahme durch externe und intrinsische Faktoren soll in 'flap-feeding' und 'split-root' Experimenten im Labor untersucht werden. Die Konkurrenz zwischen Altbestand und Naturverjüngung soll im Freiland durch vergleichende saisonale Analyse der P Aufnahme Kapazität, die Konkurrenz zwischen Wurzeln und Mikroben durch P-Fluss Analysen im Boden mit Hilde der Mikrodialyse bestimmt werden. Ein weiteres Ziel des Projekts ist die Charakterisierung von Prozessen der saisonalen P Speicherung und Mobilisierung. Dies umfasst die Aufklärung saisonaler Veränderungen des P-Metaboloms in Blättern, Wurzeln, Xylem und Phloem sowie die Zell- und Gewebe-spezifische Analyse der Orte von Speicherung und Mobilisierung in Zweigen mit nanoSIMS. Labor- und Freilandversuche sollen mit Buche und Pappel durchgeführt werden. Buche wurde als häufigste Laubbaumart Mitteleuropas ausgewählt und soll an je einem SPP-Standort mit hoher (Conventwald, saurer Boden; 'P acquiring system') und geringer (Tuttlingen, Kalkboden; 'P-recycling system') P Verfügbarkeit untersucht werden. Pappel wurde als Baumart gewählt, die für molekulare Untersuchungen von Prozessen herangezogen werden kann. Hierzu werden Proben zentraler Versuche dieses Projekt an andere Gruppen des SPP für Transkriptom Analysen weitergegeben. Aufgrund der unterschiedlichen Blatt- und Blüten-Entwicklungsstrategien kann von unterschiedlichen Strategien der P-Akquisition von Buchen und Pappeln ausgegangen werden. Deshalb sollen die mit den beiden Baumarten erzielten Ergebnisse in dieser Hinsicht verglichen werden.

Vegetation als besonders charakteristisches Element von Birkhuhnbiotopen

Das Projekt "Vegetation als besonders charakteristisches Element von Birkhuhnbiotopen" wird/wurde gefördert durch: Niedersächsische Minister für Wissenschaft und Kunst. Es wird/wurde ausgeführt durch: Universität Hannover, Institut für Landschaftspflege und Naturschutz.Im Grossen Moor bei Gifhorn wurden umfangreiche Vernaessungsmassnahmen durchgefuehrt mit dem Ziel eine bodenebene Vernaessung der abgetorften Bereiche zu erreichen. Zur Kontrolle der pflanzensoziologischen Entwicklung durch die Vernaessung wurden Transsekte in den Versuchsflaechen angelegt und waehrend 2 Vegetationsperioden die Veraenderungen aufgenommen. Parallel zu den laufenden Beobachtungen des Wasserstandes wurden ueber 2 Jahre pH-Wert-Messungen vorgenommen. Ueber ein Jahr wurden Niederschlags- und Klimamessungen durchgefuehrt, deren Werte mit denen benachbarter meteorologischer Stationen verglichen werden sollen. Stichprobenartig wurden Temperaturen der bodennahen Luftschichten als Lebensraum der Kueken des Birkhuhns erfasst. Laufende Telemetrierungsarbeiten und die Bestimmung der vom Birkwild bevorzugt aufgesuchten Bereiche erlauben erste Aussagen ueber die fuer das Birkhuhn wichtige Gliederung der Landschaft. Ergaenzend zu den durch die Telemtrierungsarbeiten gewonnenen Erkenntnisse werden Beobachtungen aus verschiedenen Mooren Niedersachsens in denen Restbestaende des Birkhuhns vertreten sind, aufgenommen.

Rasterdaten des beobachteten und projizierten Niederschlags für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1931-1960 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) - m01.. Monate Januar bis Dezember Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

Rasterdaten der beobachteten und projizierten Klimatischen Wasserbilanz für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) - m01.. Monate Januar bis Dezember Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

Rasterdaten der beobachteten und projizierten potentiellen Verdunstung für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) - m01.. Monate Januar bis Dezember Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

1 2 3 4 5171 172 173